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ABSTRACT
This paper investigates the natural bias humans display
when labeling images with a container label like vehicle or
carnivore. Using three container concepts as subtree root
nodes, and all available concepts between these roots and
the images from the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) dataset, we analyze the differences
between the images labeled at these varying levels of abstrac-
tion and the union of their constituting leaf nodes. We find
that for many container concepts, a strong preference for
one or a few different constituting leaf nodes occurs. These
results indicate that care is needed when using hierarchical
knowledge in image classification: if the aim is to classify
vehicles the way humans do, then cars and buses may be
the only correct results.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Thesauruses;
I.4.8 [Scene Analysis]: Object Recognition

General Terms
Algorithms, Experimentation

Keywords
Large scale image recognition, Hierarchical image recogni-
tion, Classifier combination

1. INTRODUCTION
The number of object categories in the world is hard to

count, but it may be in the same order of magnitude as
the number of words in language. For daily speech, a well-
educated native speaker of English has an active vocabulary
of about 17,000 words [4], but surely that is not enough to
identify all concepts. The Oxford English Dictionary con-
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tains some 600,000 words1, but since some concepts will be
indicated with a combination of a noun and an adjective,
like self-propelled vehicle and lame duck, and many words
have more than one meaning depending on the context, the
number of concepts must be much larger than the number
of words in language. And, beyond words, visual concepts
make distinctions where words fail. A “horse on a beach”
is likely to depict something different from a “horse with
a plough”. A “car with a straw hat” is likely to be rather
different from a “car with sirens on”.

In fact, the space of concepts is named by the hierarchical
order which comes with language, refining the denomination
of the objects in the world around us further and further.
This hierarchy, and its potentially endless refinement, makes
the number of concepts countless and in the end less rele-
vant. More relevant in the understanding of the denomi-
nation is the hierarchical structure of concepts. Language
brings more than one hierarchy. One common hierarchy in
language is the order of things by function: cars and bi-

cycles are both vehicles. Other hierarchies are by material
(iron covers steel and cast iron), by biological classification
(a cow and a monkey are both mammals) or by human def-
inition (e.g. speed skating and football are both sports).

The ImageNet-project [3] aims to populate the majority
of the 80,000 synsets of WordNet [9] with an average of 500-
1000 clean and full resolution images. By all standards,
this is an impressive amount of concepts and an impressive
amount of examples per concept. We turn our attention to
the hierarchical composition of concepts, as for these or even
larger numbers of concepts beyond these huge numbers, the
hierarchical composition is important. We consider group-

ings or categories of objects. There are not only cars, buses
and bikes, but also vehicles. And there are not only tigers,
dogs and hyena’s, but also carnivores, vertebrates and an-

imals. An illustration of this hierarchy is shown in figure
1.

We follow the structure of WordNet which organizes En-
glish concepts in a hierarchy, using is-a relationships. In
the WordNet hierarchy, the basic concepts are the leaf nodes
of the WordNet tree. The non-leaf nodes are indicated as
container concepts. Of course, different domains require
different levels of distinction: when finding different types
of fruit, it might suffice to distinguish apples from oranges,
making apple the basic concept. However, in an automated
grocery store checkout application, it is necessary to distin-
guish a Jonagold from a Granny Smith, and apple turns into

1See http://www.oed.com/public/about.



(a) vehicles (b) carnivores

Figure 2: Sample of pictures from the ImageNet dataset annotated with container concepts. For both
concepts, there is a strong preference for a specific descendant of the container concept.

Figure 1: A selected view of the subset of the Ima-
geNet hierarchy used for experiments in this paper.

a container concept.
Mathematically, a container concept is the union over all

subcategories. However, the composition of ImageNet indi-
cates that the contribution of descendants to the container
is not uniformly weighed. In figure 2(a), a random subset
of images annotated with vehicle is shown. It is clear that
there is a preference in the representation. The vast major-
ity of vehicle-images are cars and buses. The same holds for
the set of images annotated with carnivore in figure 2(b):
the majority of those images contain big cats. This may be
a faithful representation of the a priori probability of en-
countering a picture of a big cat relative to other members
of the carnivore class, but there are a few observations to be
made here. One, the number of pictures of carnivores in the
world is not a closed set, so a priori probability and fair rep-
resentation may become meaningless quantities. Two, when
learning to recognize concepts, an equal distribution captur-

ing all variation is more important than a fair distribution.
As even the variation in the world is endlessly complex, it is
difficult for open classes to find a fixed recipe how to sam-
ple and how many to sample. And, finally, we argue that
pictures ideally suited to cover the vehicle class are identi-
cal in their appearance to either the car or bicycle. When
selecting samples, not every car is a vehicle, and surely in
common language, a bicycle is less of a vehicle than a car
is. In the paper we will examine the consequence of each of
these observations.

As indicated in [3], the first step in populating a synset in
ImageNet is querying several image search engines with the
set of WordNet synonyms for that synset, and subsequently
using Amazon Mechanical Turk to let humans judge the
quality of the candidate images. As a result, the set of can-
didate images for a synset only includes images that are put
online with terms from the synset. This procedure, maybe
the only practical procedure one has, biases the set of images
under an ImageNet synset a strong indicator for the visual
association humans have with the words of the synset.

As can be seen from figure 2, when humans think of a
vehicle, they picture a car, less a boat or a missile, and when
they think of a carnivore, they picture a big cat, and not an
otter or a mongoose. In this paper, we aim to investigate
whether container concepts generally exhibit such patterns.
If so, this would indicate the usefulness of annotating at
every level of the hierarchy especially when selecting data
for learning how to recognize container concepts.

In this paper, we aim to answer two main research ques-
tions:

Q 1. Is a container concept classifier trained from exam-

ples at that level of abstraction visually different from a clas-

sifer trained on the examples of all leaf nodes under that

container concept?

Q 2. Is a container concept detector when learned from

lumping all examples at leaf nodes different from one learned

from the a posteriori results of leaf node concept detectors?

In this experimental study we describe the occurrence of



preferred classes for container concepts in details, and we
show the performance when training and testing on different
datasets describing container concepts.

2. RELATED WORK
One of the greatest challenges in dealing with huge datasets

is computational: when the amount of images runs in the
millions, it becomes unfeasible to train concept detectors on
general hardware. One of the angles to tackle this problem
is to exploit the natural ordering present in concepts [3, 1].
In this paper, a subset of the ImageNet dataset is used,

which was introduced in [3]. Here it was shown that ex-
ploiting the ImageNet hierarchy can provide substantial im-
provement for the image classification task. However, these
results did not take into account any human preference for
specific subclass images when labeling or searching for im-
ages annotated with container concepts: any image lower
in the ImageNet hierarchy than a certain container concept
was considered a positive example for that concept.
The strength of exploiting hierarchical knowledge was in-

vestigated further in Deng et. al. [1] for the problem of sim-
ilar image retrieval. In this work, a similarity function was
defined using the ImageNet hierarchy, and it was shown that
adding hierarchical knowledge based on this function signif-
icantly increased retrieval performance. The similarity be-
tween two concepts was defined in terms of the lowest com-
mon ancestor of these concepts, however also without taking
any preference effect for that ancestor concept towards any
of its descendants into account.
Deng et. al. [2] demonstrated that a correlation exists be-

tween the structure of the semantic hierarchy and visual
confusion between the categories, i.e. neighboring concepts
in the ImageNet hierarchy are (broadly) more likely to be
confused with each other than with concepts further away
in the hierarchy. In the current work, the relation between
concepts in a specific relation (namely ancestor-descendant)
is investigated more closely. Thus, we do not explore the
relationship between neighboring concepts (like e.g. car vs.
bus), but instead focus on the relation between car and ve-

hicle.
Rohrbach et. al. [8] also investigated the relation between

container concepts and their constituting leaf nodes on the
ImageNet Large Scale Visual Recogntion Challenge (ILSVRC).
There, it was shown that using leaf nodes as positive exam-
ples for a container class gave better results when testing
on the leaf nodes than using the images annotated for that
container concept. In our work, we test not only on the leaf
nodes, but also invesigate the classification performance on
images annotated with the container concepts. We also pro-
vide qualitative analysis of the classifiers created from the
different training sets.

3. EXPERIMENTAL SETUP

3.1 Dataset
The starting point for the experiments is the 2011. This

is the largest image classification competition to date, using
a dataset consisting of 1.23 million training images which
are hand labeled for the presence of 1,000 object categories.
These images are a subset of the ImageNet dataset. The
1,000 categories do not overlap.
Following the setup of the ILSVRC, the child categories of

the 1,000 object categories were (if present) not considered.
Three concepts positioned high in the ImageNet hierarchy
were selected as subtree roots, namely musical instrument,
vehicle, and carnivore. The images corresponding to these
nodes, the 1,000 leaf nodes, and all concepts in between (131
in total) were downloaded from the ImageNet database. For
each concept, at most 1,300 images were used as positive
training examples (less than 1,300 only when not enough
images were available). An illustration of a part of this hier-
archy is shown in figure 1.

The validation set from the 2011 ILSVRC challenge was
used as a test set. This test set consists of 50 images for
each of the 1,000 concepts, leading to 50,000 images in to-
tal. This set will be indicated by TL. As a second test set,
from the downloaded container concepts images that contain
more than 1,300 images, at most 50 images per concept are
selected. This gives a total of 2,292 additional test images,
which will be indicated by TC .

3.2 Implementation Details
All classifiers were trained in a one-vs-all setting, using

1,300 positive examples, and taking examples from all other
classes as negatives. This gives over 1.2 million negatives
to choose from for each class. To reduce the computational
load, we selected a fixed random subset of 10% (120,000
images) that were used as negatives for each experiment.
When training a classifier for a concept, all images annotated
with that concept or a descendant of it in the hierarchy were
removed from the set of negative examples.

Bag of Words Images are represented using the standard
bag-of-words model, with the SIFT [6], OpponentSIFT and
RGB-SIFT descriptors extracted using the Color Descriptor
software from [10]. The descriptors are extracted at Harris-
Laplace keypoints and densely sampled every 6 pixels at two
scales. The codebook size is 4096 and there are 1x3 spatial
pyramid subdivisions [5]. As classifier we employ a Support
Vector Machine with a histogram intersection kernel. We
use the fast, approximate classification strategy of [7].

3.3 Experiments
The experimental setup is illustrated in figure 3.
Experiment 1a: Container vs. union of constituents

To find the answers to research question 1, the first experi-
ment establishes a difference between a classifier trained on
the images labeled with a container concept, indicated by
DC , and one trained on images labeled with any of the leaf
nodes, indicated by DL. This experiment is performed on
the four root nodes mentioned indicated in section 3.1, and is
illustrated in figure 3(a). When training the classifier using
the images labeled with the leaf nodes, a random selection of
all available images is used, such that the amount of training
examples for both classifiers is equal. Results are calculated
on both test sets TL and TC .

Experiment 1b: Effects of hierarchy depth We ex-
pect that the differences between a container class and a
union of its descendants, as established in experiment 1a,
become larger with tree depth, i.e. when the distance in the
tree between a container concept and its constituting leaf
node becomes larger. For each container concept between
the selected root nodes and the 1,000 leaf nodes, pairs of
classifiers were trained in the same way as in experiment
1. This experiment is illustrated in figure 3(b). Results for
both classifiers are obtained on test set TL and the differ-



(a) Experiment 1a: Establishing the difference between a con-
tainer concept and the union of its leaf node descendants. Re-
sults for the classifier trained on vehicle images (blue square)
are compared to results for the classifier trained on images
drawn from the concepts jeep, sedan, etc. (red square).

(b) Experiment 1b: Investigating the effect of hierarchy depth
on the difference established in experiment 1a. Corresponding
classifiers are indicated by line dashes: e.g. the training set
for wheeled vehicle from the leaf nodes is sampled from jeep
until oxcart.

(c) Experiment 2a: Creating a concept detector by even com-
bination of leaf node concept detectors. In contrast to exper-
iment 1a, here separate classifiers are trained for each leaf
node, whose results are then summed.

(d) Experiment 2b: Creating a concept detector by weighted
combination of leaf node concept detectors. Using the Rank-
Boost algorithm, weights are trained for the combination of
leaf node classifiers.

Figure 3: Overview of the experimental setup. Transparent parts in the subfigures are not used for that
experiment. A square in a figure indicates that in the indicated experiment, a classifier is trained on images
from the concept or concepts within the square. Blue squares indicate to classifiers trained on images labeled
with container concepts (DC), red squares indicate to classifiers trained on images sampled from leaf node
images (DL). Squares with the same dash type in one subfigure indicate that corresponding classifiers are
trained from those sets.

ence in AP between the classifier as a function of the average
distance between the container concept and its leaf node de-
scendants is used for evaluation.
Experiment 2a: Combining constituent classifiers

Another way of creating a high-level concept classifier is to
combine the outputs of classifiers for its constituents. For
this, the outputs of the leaf node classifiers DL1

. . . DLn
are

simply summed to create a classifier for the container con-
cept C of which L1 . . . Ln are the leaf node descendants. The
detector for container concept C which is thus obtained is
indicated by DL1...Ln

. This experiment in illustrated in fig-

ure 3(c). Results for this experiment are again evaluated on
both test sets TL and TC .

Experiment 2b: Weighted subclass combination
The occurrence of preferred subclasses suggests that bet-
ter results for the combination of subclass detectors can be
obtained when attaching weights to each concept detector
output. This experiment in illustrated in figure 3(d).

For this experiment, each leaf node concept detector below
a container is interpreted as a weak classifier for that con-
tainer concept. The RankBoost algorithm as implemented



concept classifier TC TL

musical instrument
DC 0.10 0.18
DL 0.09 0.20

vehicle
DC 0.39 0.49
DL 0.11 0.59

carnivore
DC 0.35 0.39
DL 0.05 0.51

MAP
DC 0.40 0.20
DL 0.28 0.39

Table 1: Classification performance in average pre-
cision of experiment 1a. TL and TC indicate the test
sets of leaf node images and container images re-
spectively. DC and DL indicate classifiers trained on
images labeled with the container concept and with
a sample from the leaf nodes respectively. Note that
Mean Average Precision (MAP) is calculated over
all container nodes, not just the three root nodes
shown here.

by Van Dang2 was used to learn how best to combine the
leaf node classifiers. From the training images for each of
the container concepts, 50 images were selected on which
the boosting algorithm was trained. The resulting classifier
is indicated by D̂L1...Ln

and its performance was compared
with the classifiers trained directly on the container images
and with the unweighted classifier combination from exper-
iment 2a on test set TC .

4. RESULTS
Experiment 1a: Container vs. union of constituents.

In table 1, the results on the two test sets are presented.
It can be observed that a detector trained on images la-
beled at the container level performs better on test images
also labeled at the container level, while a detector trained
on images labeled at the leaf node level performs better on
test images also labeled at the leaf node level. Furthermore,
the differences in classification performance for the detectors
trained on the two different image sets are quite large for the
vehicle and the carnivore concepts (with differences of 20%
and 31% relative on test set TC respectively, and differences
of 72% and 86% relative on test set TL respectively).
In figure 4, the 35 highest ranking output images for the

two different training sets for vehicle are shown. It can be
seen that for the classifier trained on images labeled as vehi-
cle (figure 4(a)), all of the top-35 images depict cars, while
for the classifier trained on images labeled as any of vehi-
cles’ leaf node descendants (figure 4(b)), the top-35 images
depict several different vehicle-types (boats, bikes, and cars).
Thus, the first classifier gives an overview of the images that
humans generally label as vehicle, while the second gives an
overview of the images that could be labeled as vehicle.
Experiment 1b: Effects of hierarchy depth. The

results for experiment 1b are shown in figure 6. Recall that
we hypothesized that the performance difference between a
classifier trained on images labeled with the container con-
cept and one trained on images sampled from its constitut-
ing leaf nodes would grow smaller with the average distance
between the container and the constituting leaf nodes. As
can be seen from the figure, this is not the case. Note that

2http://www.cs.umass.edu/∼vdang/ranklib.html
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Figure 6: Results for experiment 1b. On the x-
axis, the average distance between a container con-
cept and its leaf node descendants is plotted, and on
the y-axis, the difference (in AP) between the two
concept detectors trained on images labeled with
the container concept and with its leaf node de-
scendants, when tested on leaf-node images. Each
data point represents a container concept. The plot
shows that the performance difference between the
two classifiers is independent of the height of the
container concept.

many of the container concepts have an average distance
to their leaf node descendants of 1 (meaning they are the
direct parents of their constituting leaf nodes), but the dif-
ferences in AP between the two classifiers for those concepts
range from −0.09 (the negative indicating that the classifier
DC outperforms DL on test set TL) to 0.75. Finally, note
that almost all of the data points are above 0, indicating
that on test set TL (i.e. the test set sampled from images
annotated with leaf node labels), the classifier trained on
the images labelled with leaf node labels almost always out-
performs the classifier trained on the images labelled with
container node labels. This confirms the impression from
table 1. Additional experiments have confirmed that on test
set TC , classifiers DC outperform DL (data not shown).

An illustration of the fact that a classifier trained on a con-
tainer element closer to its constituting leaf nodes can differ
more is given in figure 5, which shows the top 35 results for
the concept self-propelled vehicle for the two different clas-
sifiers. Self-propelled vehicle has an average distance to its
leaf node descendants of 2.6, while its ancestor vehicle has
an average distance of 4.2. In contrast, the difference in AP
between the classifiers trained on the container images and
on the constituting leaf node images is 0.29 and 0.1 respec-
tively. The reason for this large difference in performance
can be seen in figure 5(a): almost all images in self-propelled

vehicle are of military vehicles, while there are no images
of military vehicles in the 1,000 concepts of the ILSVRC
dataset. Note that in the ImageNet hierarchy, there are
military vehicles as descendants of the self-propelled vehicle
class. These are, however, a small minority of all its descen-
dants. When repeating the experiment using all constituting



(a) Results for classifier trained on container-labeled images. (b) Results for classifier trained on leaf node-labeled images.

Figure 4: Top 35 results for two different vehicle classifiers from experiment 1a. Note that the classifier
trained on images labeled as vehicle has only cars as its highest-ranking output images, but the one trained
on the leaf node images has much more diverse high-ranking images.

concept classifier TC TL

musical instrument
DL 0.09 0.20
DL1...Ln

0.09 0.44

vehicle
DL 0.11 0.59
DL1...Ln

0.13 0.75

carnivore
DL 0.05 0.51
DL1...Ln

0.06 0.69

MAP
DC 0.40 0.39
DL 0.29 0.44

Table 2: Classification performance in average pre-
cision of experiment 2a. TL and TC indicate the test
sets of leaf node images and container images respec-
tively. DC and DL1...Ln

indicate classifiers trained
on images labeled with the container concept and
by combining classifiers from the constituting leaf
nodes respectively. Note that Mean Average Preci-
sion is calculated over all container nodes, not just
the three root nodes shown here.

leaf nodes of self-propelled vehicle, the difference is expected
to decrease slightly. However, the imbalance between the
amount of military vehicles in self-propelled vehicle and in
its constituting leaf nodes will remain significant.
Experiment 2a: Combining constituent classifiers.

Table 2 presents the results for the concept detectors trained
by combining leaf node detectors on test sets TL and TC . For
comparison, the results for the detectors that were sampled
from all leaf nodes (DL) are also given.
As can be seen from the table, the detector created by

the summation of the leaf node detectors (DL1...Ln
) out-

performs the basic container level detector when testing on
the images labeled with leaf nodes (TL). The differences
in performance are significantly larger than in experiment
1a. This can be explained by the fact that each leaf node
classifier is trained specifically for the images on the same
level as the test set. Furthermore, since each classifier is
trained with the same amount of training images, the com-

concept classifier TC

musical instrument
DC 0.10
DL1...Ln

0.09

D̂L1...Ln
0.08

vehicle
DC 0.39
DL1...Ln

0.13

D̂L1...Ln
0.26

carnivore
DC 0.35
DL1...Ln

0.06

D̂L1...Ln
0.18

Table 3: Classification performance in average preci-
sion of experiment 2b. Results are calculated on test
set TC , consisting of images annotated with the con-
tainer node labels. images respectively. DC , DL1...Ln

,
DL1...Ln

indicate classifiers trained on images labeled
with the container concept, as combination of con-
stituting leaf node classifiers, and as weighted com-
bination of constituting leaf node classifiers respec-
tively.

bined classier created here benefits from a much larger total
set of training examples (namely n × 1, 300), which always
increases classifier performance.

When testing on images labeled at the container level,
there is only a slight difference in performance between com-
bining leaf node detectors, and training on a sample from all
leaf nodes. This shows that both methods are not equipped
to capture the preference phenomenon that we have seen so
far. These results also extend to the lower level container
nodes used in experiment 1a (data not shown).

Experiment 2b: Weighted subclass combination.
Using the RankBoost algorithm, we trained a boosting clas-
sifier with a selection of the container-labeled training im-
ages as ground truth for the boosting algorithm. Results are
shown in table 3.

The table shows that for carnivore and vehicle, a large
performance gain can be achieved over the unweighted com-



(a) Results for classifier trained on container-labeled images. (b) Results for classifier trained on leaf node-labeled images.

Figure 5: Top 35 results for two different self-propelled vehicle classifiers from experiment 1b. Note that the
images in (a) differ even more from those in (b) than the images in figure 4(a) differ from those in 4(b), even
though in the ImageNet hierarchy, self-propelled vehicle is on average closer to its constituting leaf nodes than
vehicle.

bination of leaf node classifiers. However, on the full set of
container concepts, the weighted subset combination in fact
performs worse than the unweighted version, with large dif-
ferences between cocnepts (data not shown). This indicates
that care needs to be taken when using this type of two-
step training: with too little or poorly chosen training data,
results can be in fact harmful to performance.

5. CONCLUSIONS AND DISCUSSION
In this paper, we have shown that the set of images an-

notated with a container concept is substantially different
from the union of the sets of images annotated with its leaf
nodes. By training classifiers on images annotated with a
container concept and comparing them to classifiers trained
on their constituting leaf node concepts, we have shown that
the answer to our first research question is affirmative: there
exists a strong visual difference between these two classifiers.
Furthermore, we have shown that this difference does not
necessarily decreases when the container concept covers less
diverse leaf node concepts.
Secondly, we have shown that while training separate clas-

sifiers for the leaf node concepts improves performance when
testing on leaf node-labeled images, performance on container-
node images stays generally similar when testing on images
labeled with the container concept. When training a boost-
ing algorithm on the container-labeled training images, per-
formance does improve. This indicates that the preference
problem cannot be solved by simply using more training
data, the actual class preferences need to be considered.
This study confirms the bias effect that exists in images

on the web: images annotated with a container concept are
not evenly distributed amongst the basic concepts that make
up the container. This indicates that, when creating an im-
age classification system for such container concept, careful
consideration about the desired behavior is necessary: When
the aim is to simply rank images based on whether they con-
tain e.g. any type of vehicle, using images from all concepts

below vehicle as training examples are useful. However, if
the aim is to adequately reflect the bias properties of the
container concept, only images explicitly labeled as vehicle

should be used as training examples.
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