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1 Introduction

Current multimedia retrieval research can be divided roughly into two camps.
One camp is looking for the panacea which solves all problems in one system.
The other camp focuses on very specific problems in restricted domains. In
our opinion, the answer lies in the middle. A system should not desire to solve
all problems, but should take advantage of a user’s knowledge about his or
her specific problem, so that the system can focus on it. On the other hand,
available video analysis techniques should be extended to other domains which
possibly were not envisioned upon their design. The challenge is transparent
application of video analysis techniques to the appropriate user domains.
A user, especially an expert, has best knowledge about the characteristics

of a particular domain. In this paper the user’s input is given at index-time,
rather than at query-time as done in our TREC 2001 contribution [2]. In [2], we
associated user queries with video content descriptors via general Wordnet con-
cepts. For example, query term woman maps to Wordnet hypernyms “person,
individual, human” which we associated with the “face presence” descriptor. In
this TREC 2002 contribution, we focus on building models for the association
of content descriptors with generic concepts, such as the Wordnet hypernyms.
Specifically, we focus on the ten generic concepts given by the TREC feature ex-
traction task1. User and machine interact in order to map the semantic feature
concept to content descriptors for a training set, so that shots can be classified
for use in retrieval applications.
In this paper, we assume that every feature model is specific to not only

the domain, but even to a collection, in order to exploit domain characteristics

1In the remainder of the paper we follow the TREC terminology, referring to the semantic

concepts as features.
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and user domain knowledge. The use of a small number of broadly applicable
features for video content classification is described by IBM [11] in last year’s
TREC, showing relatively good results. Their probabilistic system mixes the
use of models for general features (e.g. outdoors and face) with models for
domain-specific features (e.g. rocket and fire). In our approach, every model is
collection-specific. That is, even a general feature is considered to be specific.
For example, although the outdoors semantic concept can be found in many
video collections, its visual representation in a video may be quite different.
Footage of the Discovery Channel shows a different kind of outdoors sceneries
than television sitcoms. The old instructional videos for school kids in the
TREC 2002 collection are quite different from the videos shown at school to
the MTV- and Nintendo-generations. In addition, a feature can be defined
differently amongst domains, resulting in the need for different models as well.
For example, the definition of the face feature for a Cartoon Network collection
is different from the one for C-SPAN.
Focusing on one particular collection enables for use, or some might say

abuse, of simple content descriptors that are correlated to a semantic concept.
This may be caused by the style of one or more people in the film crew, such
as director, editor and camera man. An example of specific collection charac-
teristics is found in the TREC 2001 video collection. The camera movement
descriptor could be used to classify shots as mountains, as they roughly cor-
respond with camera pans. Although such a classification method cannot be
generalized to other collections, it allows for uncomplicated retrieval of videos
in a specific collection.
We present a system which interactively learns user-defined semantic con-

cepts for a specific collection from a domain expert. For each concept, the do-
main expert builds a model by feeding visual evidence to the system in the form
of examples, without knowledge about the underlying classifier and descriptors.
We employ a large set of multimedia descriptors for use in a Maximum Entropy
classifier. The space for example selection is determined by the output of the
incrementally improved model. The system is evaluated against the TREC 2002
feature extraction collection. The user information consists of the ten semantic
concepts defined for the feature extraction task.
As our system is based on visual evidence, we focus on visual content

of videos. That is, we focus on the features outdoors, indoors, face, people,
cityscape, landscape, text overlay and monologue. The classification of the au-
dio features (speech and instrumental sound) is provided independently and is
described briefly in section 2.2.
The paper is organized as follows. In section 2 we describe how video content

is represented for example selection and classification. In section 3 the use of
the Maximum Entropy classifier for multimedia content is described. In section
4 the interactive selection of examples using active learning is explained. In
section 5 we describe the experimental setup for TREC evaluation. Results are
discussed in section 6. Finally, we present conclusions and future research in
section 7.
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2 Content representation

2.1 Data representation

The elementary unit in the context of TREC is a shot. However, the shot itself,
i.e. the sequence of frames, is not always a good representation for the visual
content. There are two reasons for employing an alternative representation.
Firstly, a shot is not necessarily visually and semantically coherent. In [14] such
fractions of a shot are called a shot-let, while in [12] this division is referred
to as named events, which are short segments with a meaning that does not
change in time. Division of the shot into smaller coherent fractions allows for
better representation of the shot’s content. In the context of TREC the further
division is especially important, as the reference shot segmentation suffers from
undersegmentation, combining consecutive shots into one shot. In addition,
division into lower level units prevents loss of information due to aggregation.
This is especially important in the context of TREC, as the feature definitions
state that a shot is assigned to a class when at least an observable part of
the shot belongs to that class. That is, a shot could be assigned to disjuncts
concepts, e.g. both outdoors and indoor.
The second reason is computational feasibility. Using expensive descriptors

derived from image processing on each frame in a shot requires a large amount
of computing power. Meanwhile, the descriptor values can be expected to be
highly similar in consecutive frames, as the content of frames change just grad-
ually within a shot. Therefore it is expected that choosing a representation
which requires less computing power does not result in loss of information as a
consequence.
We choose to use content-dependent key frames as representation of a shot

for image processing based descriptors. Motion descriptors are calculated on
shot level for practical reasons, i.e. compatibility with existing systems. Content-
dependent selection of key frames is based on the change in visual content during
a shot compared to the change of content in the entire video [7]. Shots contain-
ing a relatively high amount of changes are assigned more key frames. Within
a shot, key frames are chosen such that the total amount of change in the
surrounding segment is approximately equal for all key frames in the shot.

2.2 Descriptors

Descriptors describe the content of a shot, or the content of a representation of
a shot, in order to enable comparison of the content of two shots. For automatic
use by the classifier, we employed a descriptor pool containing over 60 descrip-
tors. The descriptor pool is not geared towards a specific data collection, as the
system is designed to be independent of the data collection. The descriptors
include atomic descriptors such as color values and color distributions, edge
characteristics, and motion descriptors; and complex descriptors such as face
presence [10] and camera movement [1]. Due to the large amount of descriptors,
it cannot be assumed that they are independent. For example, one descriptor
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(e.g. dominant color) may coexist with a specialization of itself (e.g. dominant
color in the top half).
In the following sections, we describe in more detail the descriptors that

relate specifically to the temporal component of video shots.

2.2.1 Motion

Motion descriptors are extracted by a two-level analysis. At the block of frames
level we analyze the motion by estimating a parametric motion model with
a robust regression scheme [1]. In this way we obtain two types of low-level
features. On the one hand we obtain the camera operation (pan, tilt, zoom-in,
zoom-out or unknown) and the factors that are related to it (focus of expansion,
pan-factor, etc). On the other hand, we obtain descriptors such as the average
motion, the percentage of outliers from the dominant motion model, and the
average position and motion of the outliers.
At the shot level, the descriptors of the block of frames level are combined

for the estimation of descriptors such as the average pan factor in the shot, the
motion activity due to camera operations and the percentage of frames in which
the camera zooms in. The shot level descriptors are used for classification of
the shot.

2.2.2 Audio

The classifications for the two audio features (speech and music) are provided
independently by TNO-Human Factors. Classification is done without prior
knowledge about the data set.
The speech/music discrimination is based on amplitude variation in the au-

dio’s signal envelope shape. Generally, speech has higher amplitude variations
than music in the spectral regions around 475 and 2700 Hz. The input signal
is partitioned into 1 second segments. For each segment, the amplitude fluc-
tuations in these bands are determined and they are low pass filtered at 8Hz.
When the amplitude variation in either of the two spectral bands is above a
certain threshold, the segment is identified as speech, otherwise as music. A
third category silence is used if the total acoustic energy is low. The thresholds
are based on values found for Dutch radio and television broadcast material, as
well as eight music CD tracks with various music styles (classical instrumental,
vocal, pop and jazz).

3 Classifier

The concept classifier used to model features has to deal with three issues con-
cerning the data set and the descriptors. Firstly, the classifier has to cope with
descriptors that are undefined for a shot. For example, when there is no pan
camera movement in a shot, the pan factor descriptor is undefined. Secondly, in
contrast with [11], it is our opinion that the classifier cannot assume descriptors
are independent. Independence is not expected in multimedia objects, such as
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video shots, because they comprise several correlated information sources. In
addition, the use of a large descriptor pool leads to interdependencies of de-
scriptors. Thirdly, the classifier has to cope with an imbalanced data set. Just
a relatively small number of positive examples is available in the training set.
Training should focus on the positive examples, since the given features are one
class problems [15].
For classification we choose the Maximum Entropy classifier, as it deals with

the above issues. Firstly, it makes use of sparse vector format, thereby dealing
with missing descriptor values. It is not necessary to provide dummy values for
undefined descriptors. Secondly, the classifier assumes no independence between
descriptors, in contrast to classifiers as Naive Bayes [8]. Thirdly, we found in
experiments that a Maximum Entropy classifier is less sensitive to the majority
effect than a Support Vector classifier [8]. Hence it is well suited for a data
collection containing few positive examples.
Maximum Entropy classification has been applied successfully in a variety

of domains, including the area of statistical natural language processing where
it achieved state-of-the-art performance [4]. The Maximum Entropy framework
was originally proposed by Jaynes [9] as a means to make inference based on
partial information. Jaynes claimed that “the only unbiased assignment one
could make, should use the probability distribution which has maximum entropy
subject to whatever is known”, i.e. the probability distribution keeping the
uncertainty maximal.
The Maximum Entropy approach allows for the use of a large amount of

descriptors without the need to specify their relevance for training a specific
semantic concept. The relative importance of each descriptor is computed au-
tomatically by the Generalized Iterative Scaling (GIS) algorithm [6]. This makes
Maximum Entropy classification generally applicable.
A general problem for classifiers is diversity in descriptor types. The Maxi-

mum Entropy classifier suffers from this problem as well as it makes use of binary
trigger descriptors, i.e. either the descriptor is true or it is false/undefined. Our
original multimedia descriptors are both categorical and numerical. An example
of the former descriptor type is “type of camera movement”, which takes values
such as “zoom” and “pan”. Categorical descriptors can be used directly as a
binary trigger. The mapping of numerical descriptor values to binary triggers,
however, is non-trivial.
For further discretization of numerical descriptor values we employ a binning

function which maps each value to a categorical representation. The binning
process itself does not need to lead to loss of information. For many descriptors,
numerical values have a higher precision than is needed or used. For example,
there is no significant difference between value 0.10 and 0.101, i.e. more precision
does not necessarily lead to better description of the content. It is often sufficient
to express a descriptor’s value categorically. An example is the use of “mostly
orange” or “very orange” to describe a color as done in [13]. The choice for the
number of categorical values (bins) has to be established experimentally.
The binary trigger descriptor resulting from binning is used by the Maximum

Entropy classifier. A disadvantage of binning which is specific to the Maximum
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Entropy approach is the loss of order. That is, for the classifier bins are not
related in any way. Bin 1 is not closer to bin 3 than to bin 9. Even when binning
does not lead to loss of information for an individual descriptor value, it does
lead to information loss for the similarity between shots.
The binning function has to take into account that not all descriptor values

are normalized. Therefore we choose the use of equal frequency binning, which
is performed after descriptor computation for the entire collection. It divides
the descriptor values into a fixed number of bins such that each bin contains
approximately the same number of values. Equal frequency binning is not sen-
sitive to outlying values and skewed distribution of values over the range. The
remaining problem is to choose the number of bins for discretization.
The implementation used for the Maximum Entropy classification is the

publicly available OpenNLP Maximum Entropy Package [3].

4 Interactive teaching

As all learning classifiers, Maximum Entropy suffers from the need to select
training examples from the collection. It requires a great deal of human effort
to label the examples. Minimizing the human effort without compromising the
quality of the examples is an important issue.
The traditional approach of random sampling is often chosen to acquire

examples from a collection. However, for the problem at hand random sampling
does not seem optimal. Cohn [5] addresses this issue in general in the context
of neural networks, stating that in many formal problems it is more efficient
to focus on a region of uncertainty rather than the entire collection. For the
specific problem of TREC 2002 feature extraction we found this to be the case.
The reason to use more intelligent example selection than random sampling

lies in the nature of the TREC features. Although the features can be perceived
as binary (e.g. a shot contains overlay text or not), really the feature can be
defined by positive examples only as the scope of negative examples is too broad.
Therefore, focus on finding positive examples is needed.
In addition to the relative importance of positive examples, the positive

examples are relatively rare in the collection. For example, we estimate 5% of the
shots in the training collection contain overlay text. Even when a classifier does
not need many positive examples, a sufficiently large set in absolute numbers
must be given. Hence, it is more important to find positive examples describing
the feature than to find examples representative for the collection.
To give precedence to labeling of positive examples we apply active learning,

which is defined by [5] as “any form of learning in which the learning program
has some control over the inputs it trains on”. That is, the classifier controls
which examples are presented to the teacher for judgement.
Because of our focus on positive examples, for employment of active learning

in our system we use a variant on the region of uncertainty described in [5].
Instead of presenting the teacher shots of which classification is most uncertain,
we present shots for which labeling is most important, i.e. the shots most likely
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to be positive examples. This way, the teacher does not just provide examples,
but indirectly he or she gives feedback on the classifier.
Theoretically, the active learning approach described could lead to under-

sampling of negative examples. However, in practice this would occur only when
the model is very good from the start, or when positive examples are abundant
in the collection. Both cases are unlikely in the context of the TREC feature
extraction task.
Ideally, all presented examples would be classified by the teacher as either

positive or negative. In practice, we have to introduce an “unclassified” category
for two reasons. The first reason is that some shots do not contain sufficient
information to be classified unambiguously. That is, the feature value cannot
be determined without speculation or knowledge about the context. The second
reason relates to definitions. The definitions given for the TREC experiment do
not always match with the intuitive classification for a feature. This problem is
not specific to TREC, but would occur in any large data collection for a broad
domain, especially when there is more than one teacher. In cases where intuition
and strict definition clash, the teacher uses the “unclassified” label. In terms
of the classifier it means the model is not trained on “unclassified” examples,
and we have no opinion on the outcome of the classifier for such examples when
applied to the test collection.
We use the i-Notation system described in [16], extended with access to

the OpenNLP Maximum Entropy Package [3] for selecting possibly positive
examples. It is depicted in figure 1.

5 Experimental setup

In this section we describe briefly the most important parameters influencing
the experiment.
Key frames are selected as described in section 2.1, with a minimum of 2

key frames per shot and an average (per video) of 1 key frame every 2 seconds.
The amount of bins is fixed to 4 for all numeric descriptors in the pool.

Experiments with other bin amounts in the range of 3 . . . 10 showed no significant
impact on results for the training set.
As the Maximum Entropy classifier’s decision is binary for each feature, the

results consists of shots for which a positive decision with a likelihood ≥ 0.5 is
found.
The confidence of the existence of an audio feature (speech or music) within

a video shot is computed as the number of segments classified as the feature
normalized over the total shot length. The confidences of all shots are ranked
and cut off at the given maximum of 1000 shots.
The two runs are different for the eight visual features only. The two aural

features are constant. In the second run, we add the confidence measures for
the aural features as descriptors used to classify the eight visual features.
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Figure 1: Screendump of the i-Notation system extended with active learning
functionality.

6 Results and discussion

The likelihood threshold on the classifier decision confidence has a large impact
on the evaluation, as the results lists are smaller than the maximum of 1000
shots for evaluation. The results lists vary from 744 shots for outdoors to 4 for
landscape. The overall TREC results show that many more shots with the same
feature are available in the collection, indicating that our threshold is too high.
Employment of a large descriptor pool does not have a negative impact on

results according to a comparative experiment. We estimated results for the
face feature using the “face presence” descriptor only, which is obviously a very
powerful descriptor for this feature. Although adding the other descriptors do
not lead to better classification results, they do not corrupt the classification
either.

7 Conclusions and future research

The use of active learning in combination with the Maximum Entropy classi-
fier leads to a generic approach for feature classification applying to a specific
collection. The results of classification for the eight visual TREC features are
not satisfactory. This may be due to the heterogeneity of the TREC collection,
which is composed of several semantically unrelated collections. Although our
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approach should be able to cope with such a collection as well, the active learn-
ing component should be designed to take the heterogeneity into account. That
is, the active learning component should take examples from all sub-collections
for labeling by the user, thereby avoiding a local optimum.
The threshold used to determine positive decisions is too high. In the context

of TREC evaluation, it would be better to rank all decision confidence values.
Further research is needed to find out whether a ranking approach conflicts with
the theory on which the Maximum Entropy classifier and its implementation are
based.
The use of a large descriptor pool does not confuse the classifier when one

very powerful, specific descriptor for a feature is present, as in the case of the
face feature. Therefore, in future experiments we intend to use more descrip-
tors rather than less. However, an automatic mechanism for selecting relevant
descriptors from the pool for a particular feature is desired to be more robust
against noise. Although initial experiments on the video data set do not yet
show significant effects, we found selection and combination of descriptors to be
useful in other Maximum Entropy applications.
The most important future research theme for use of Maximum Entropy

classification in multimedia is the binning function. The effect of variations on
the current binning function need to be measured. Examples of variations are
small versus large amount of bins, determination of amount of bins for each
descriptor individually, and using overlapping bins to deal with border values.
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