Andrii Zadaianchuk, 2025

Learning **Structured Video Representations** without Supervision

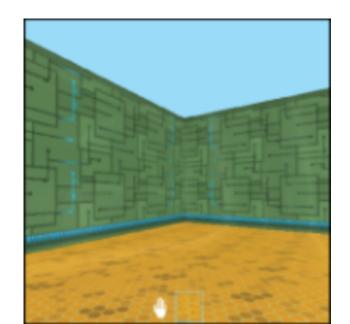
Why do we need stuctured representations?

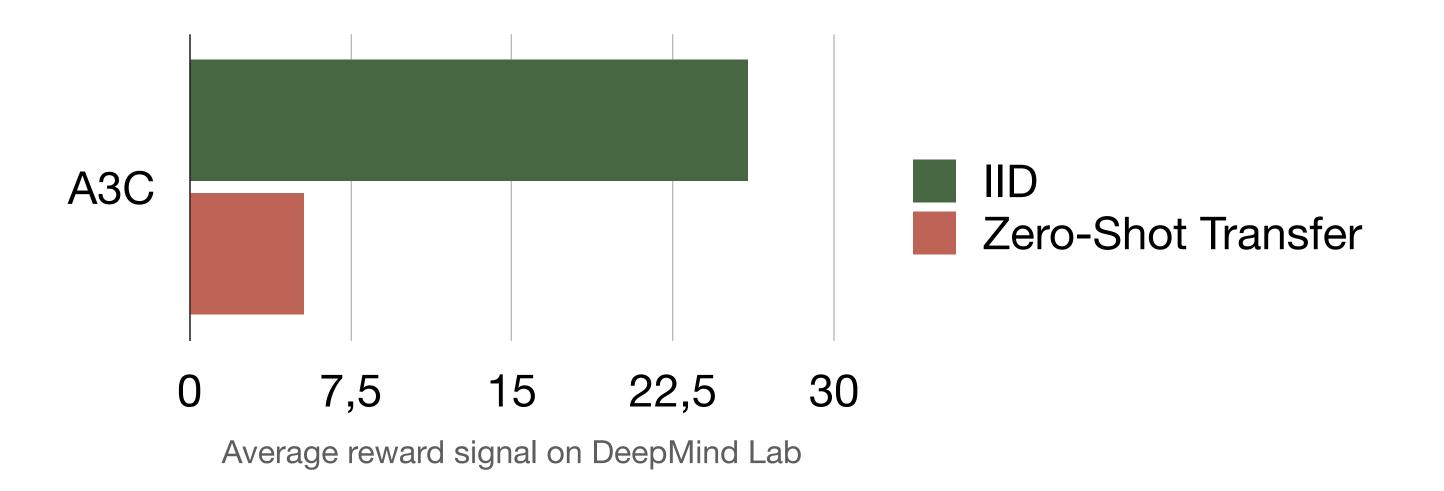
DeepMind Lab Nav Maze Level 1

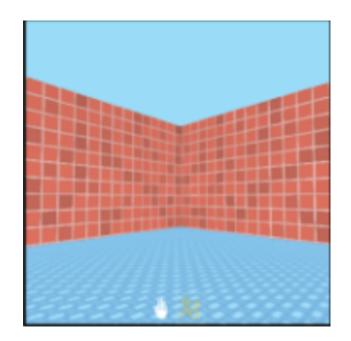
Here the player has to navigate a maze with multiple rooms in order to find the goal.

Player has to navigate a maze with multiple rooms in order to find the goal.

What about Zero-Shot Transfer?



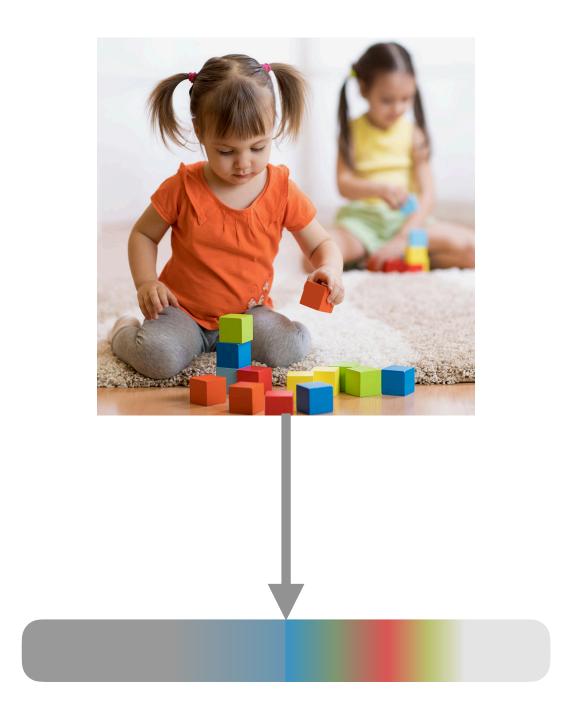




How to represent the world around us robustly?



Representation Learning from Pixels



Single vector

Binding Problem in Distributed Representation

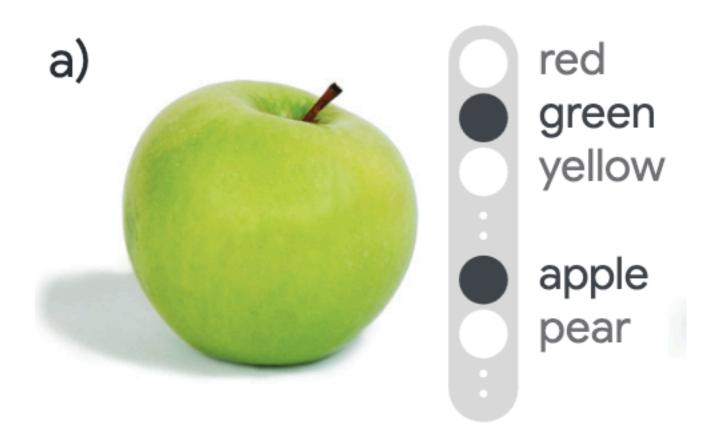
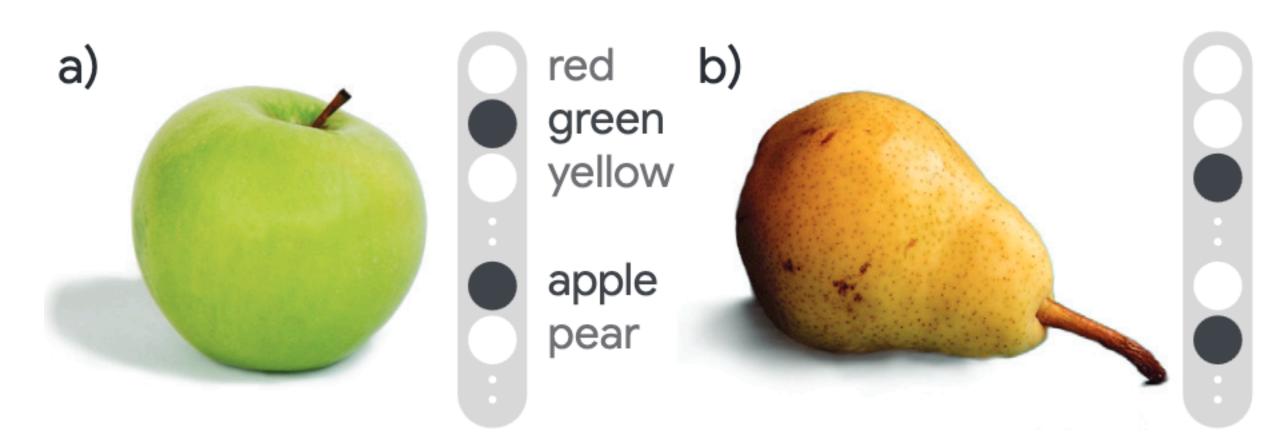


Figure: Greff et al. (2020)

Binding Problem in Distributed Representation

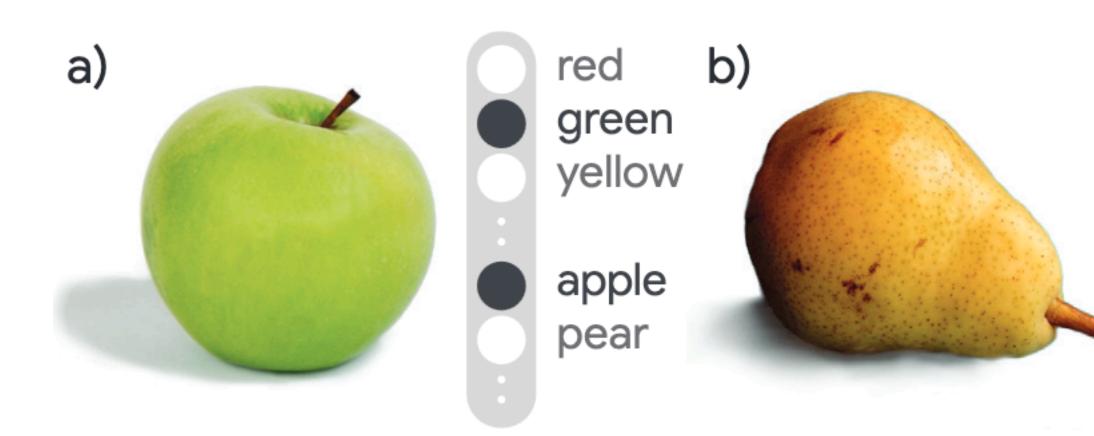


red green yellow

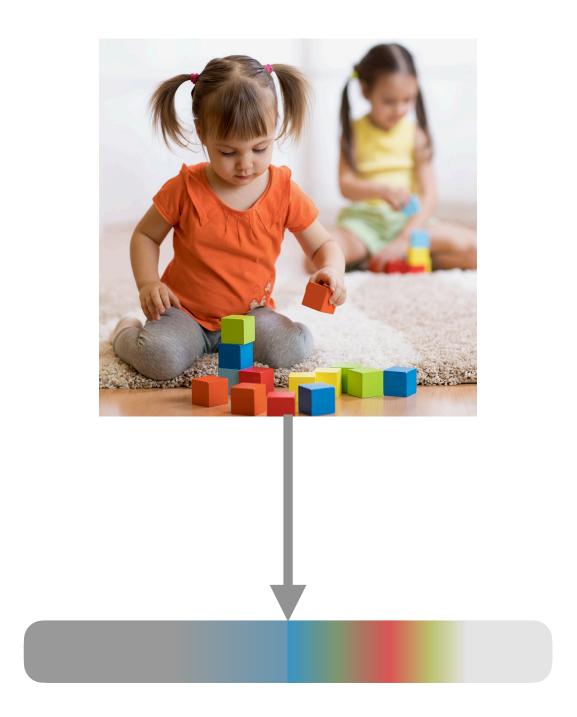
apple pear

Figure: Greff et al. (2020)

Binding Problem in Distributed Representation

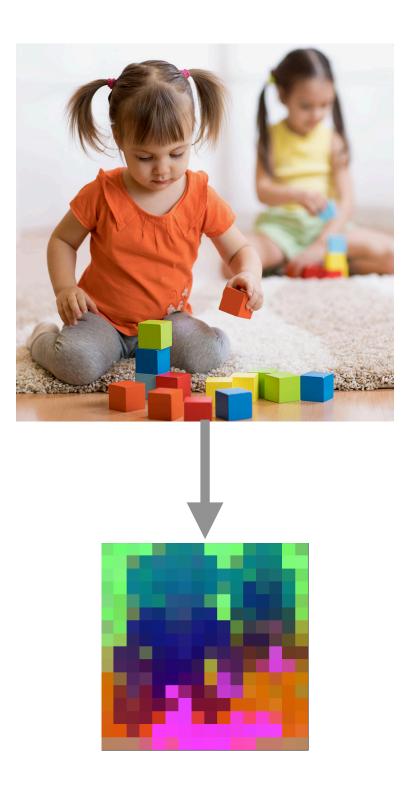


Representation Learning from Pixels



Single vector

What if we can learn representations that are structured similarly to the original scene?



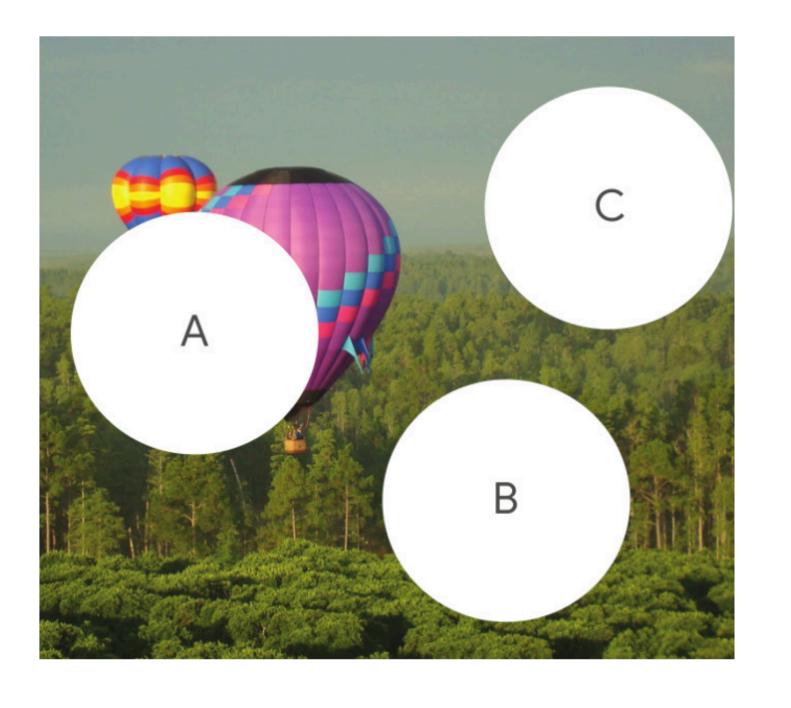
Dense grid of features

Do we need structured representations if we have scale?

An image showing 12 plain tea cups from the same set, all identical in style and design.

Here is the updated image showing exactly 12 plain tea cups, all identical in design and style. Let me know if there's anything else you'd like adjusted!

How humans structure information about scene?



We group:

- regions that are largely independent of their context
- regions that exhibit strong internal predictive structure

Objects are good candidates for both!

Objects are building blocks of the visual scene?

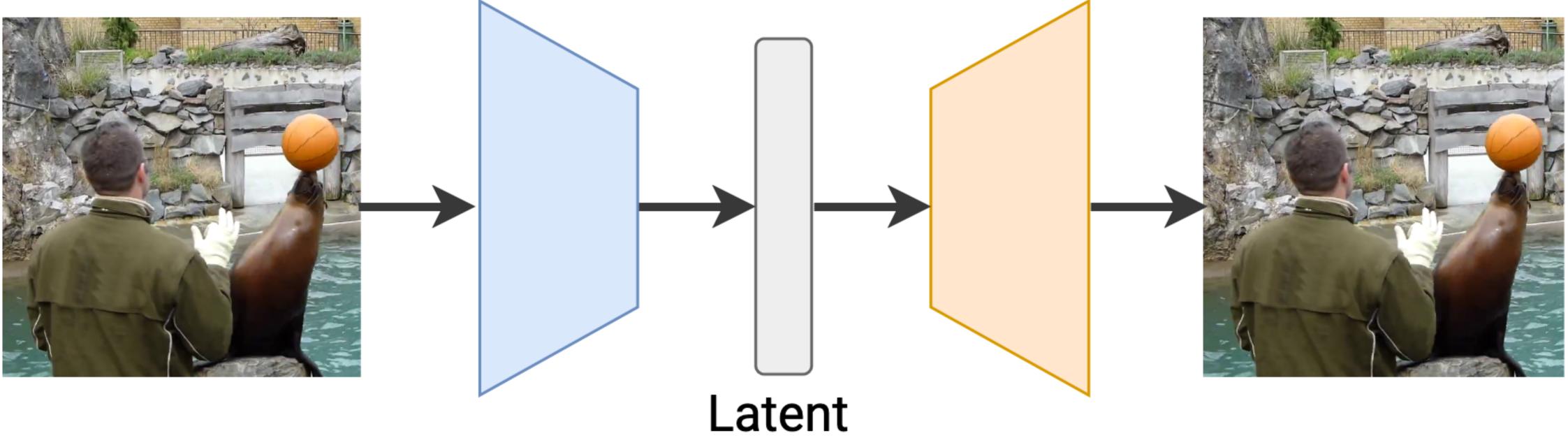
- Instance segmentation and tracking
- Visual reasoning and planning
- Combinatorial generalization

Unsurevised Object-Centric Representations

Object-centric representations

- Different objects are represented by different vectors
- Those vectors are grounded on particular image segments
- Trained end-to-end with architectural inductive biases and self-supervision objectives

Unsupervised Representation Learning



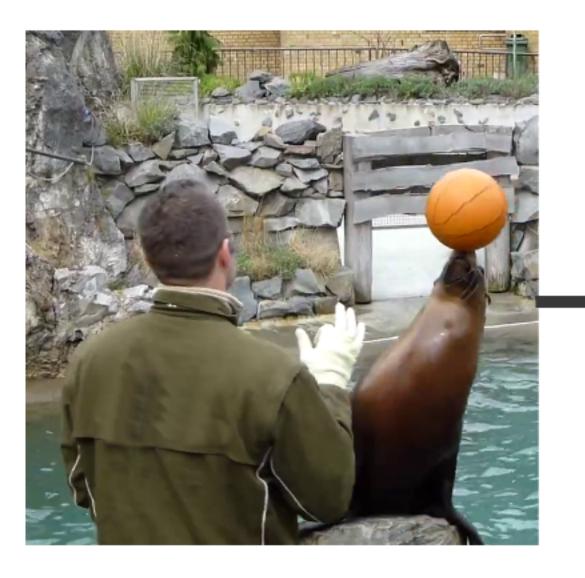
Decoder

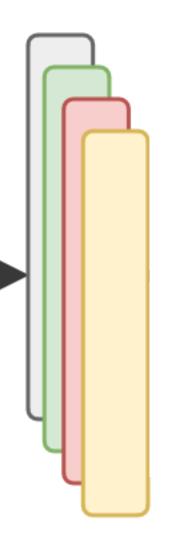
Reconstruction

representation

Object-Centric Representation Learning

Encoder with inductive bias

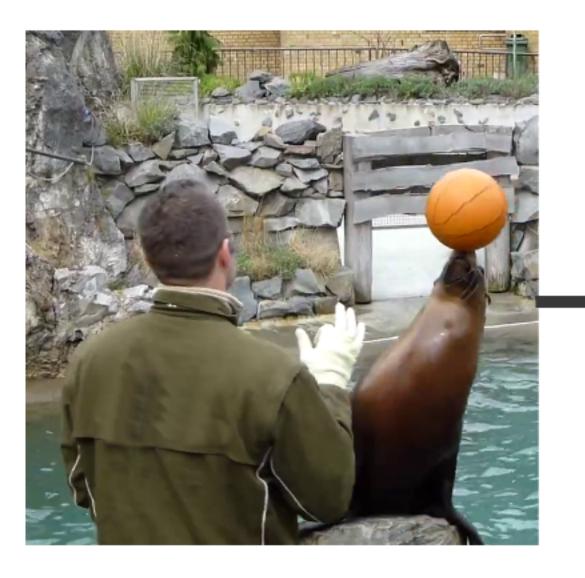




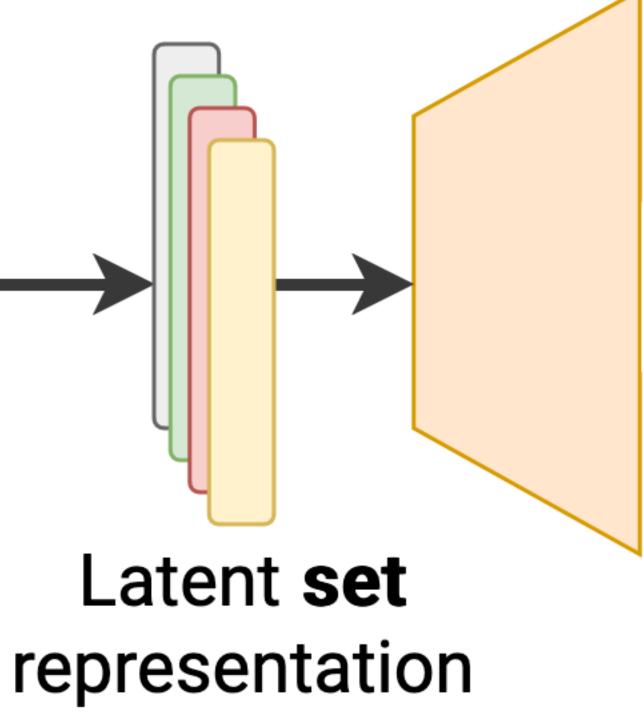
Latent **set** representation

Object-Centric Representation Learning

Encoder with inductive bias

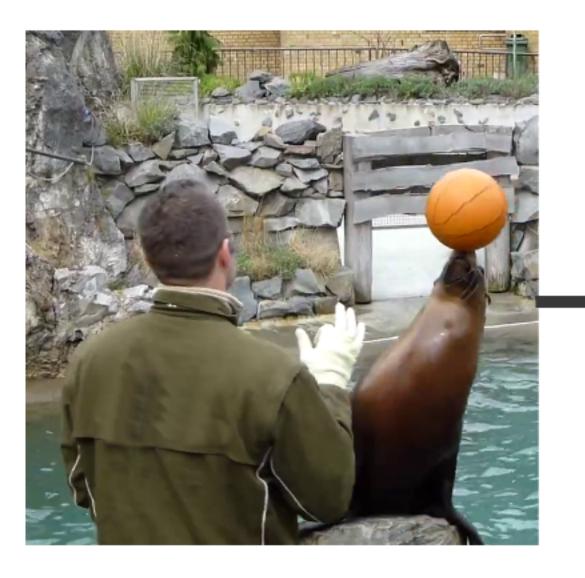


Decoder with inductive bias



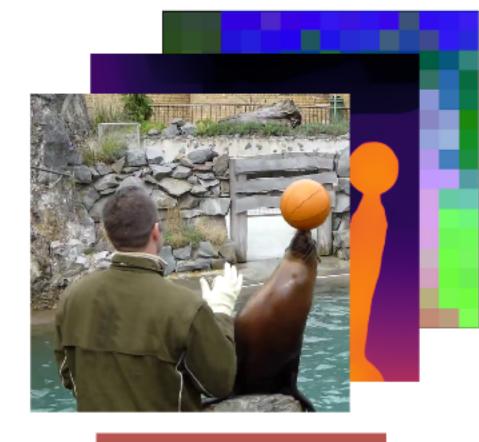
Object-Centric Representation Learning

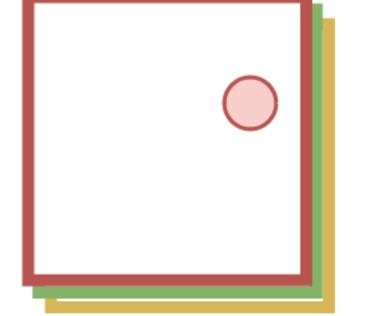
Encoder with inductive bias



Decoder with inductive bias

Self-supervised targets

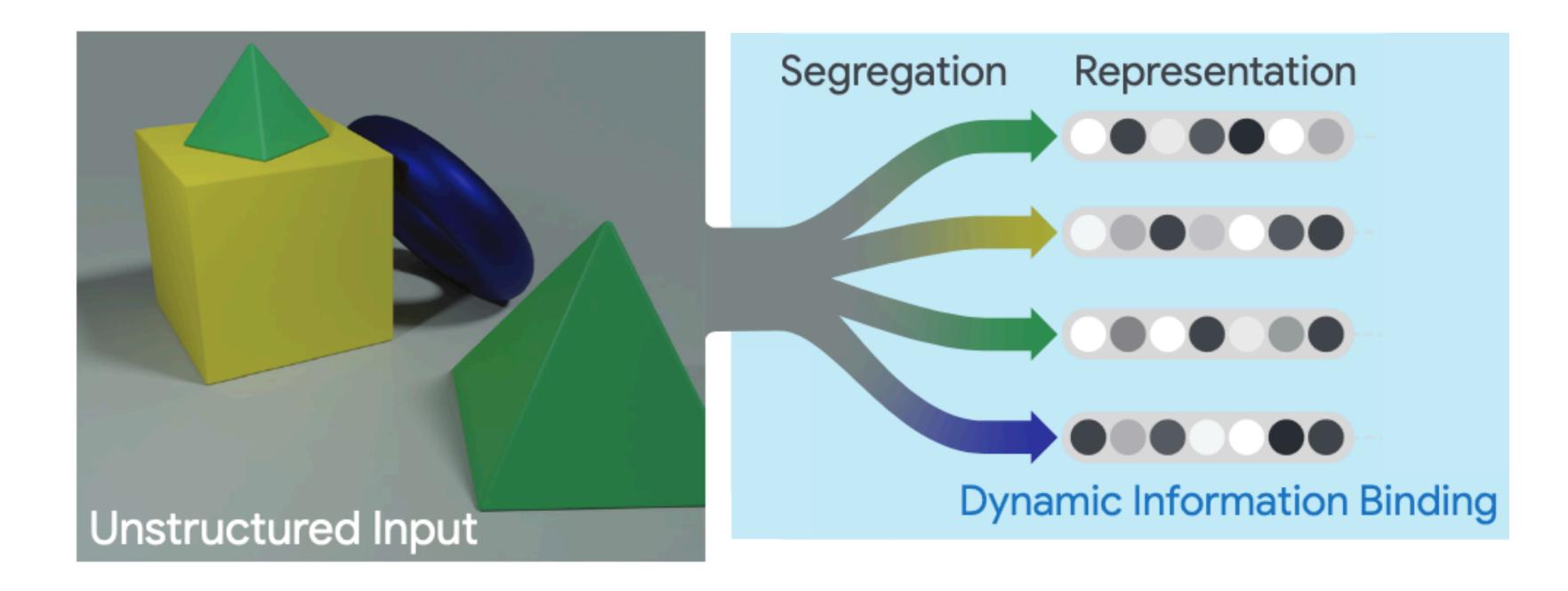




Latent set representation

Objects' masks

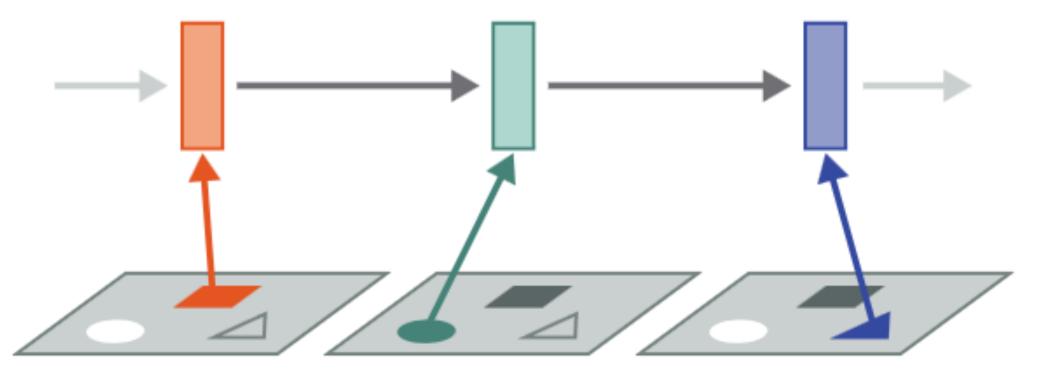
Scene Decomposition Into Objects



Dense pixels / features should be separated into discrete set of vectors or slots

• Routing problem: which vector is responsible for which object?

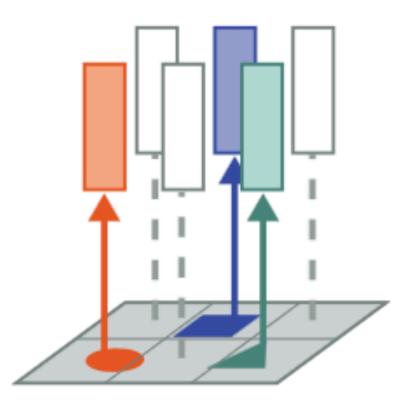
Different Ways to Decompose

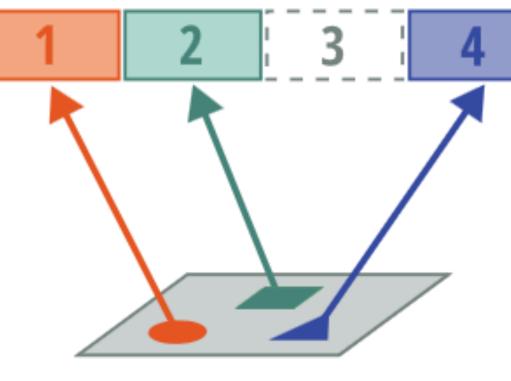


Sequential Slots

Encoder inductive biases could be categorised in terms of encoder outputs named slots:

- Sequential slots → ordered sequence of vectors
- Spatial slots \rightarrow sparse grid of vectors
- Instance slots \rightarrow permutation-invariant set of vectors

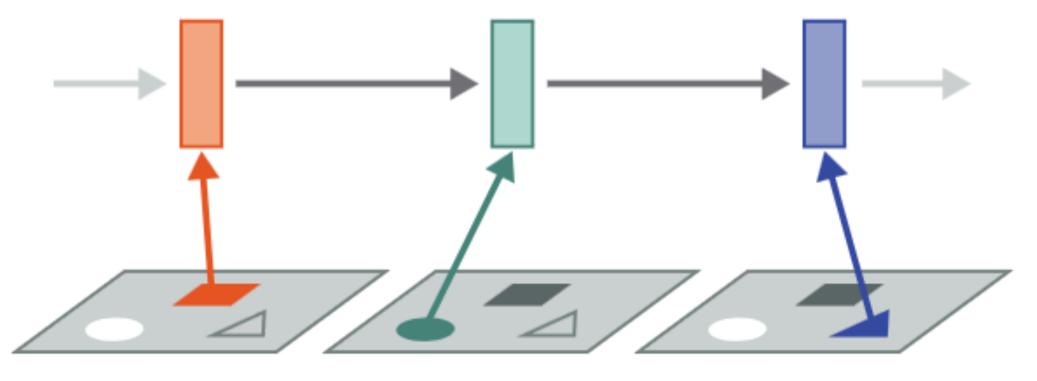




Spatial Slots

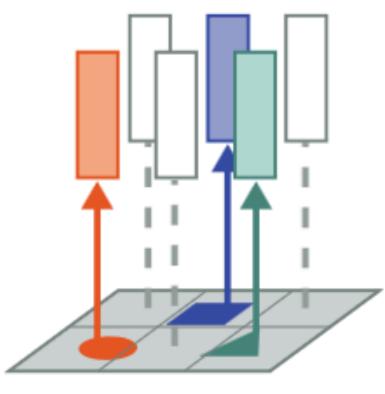
Instance Slots

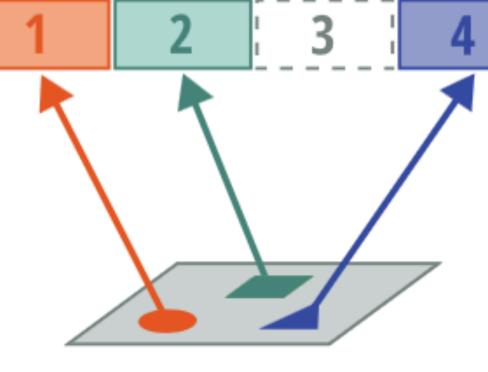
Different Ways to Decompose



Sequential Slots

AIR [Eslami et al., 2016] SPAIR [Crawford & Pineau, 2019] SQAIR [Kosiorek et al, 2018] SPACE [Lin et al., 2020] MONet [Burgess et al., 2019] SCALOR [Jiang et al., 2020]

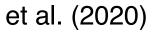




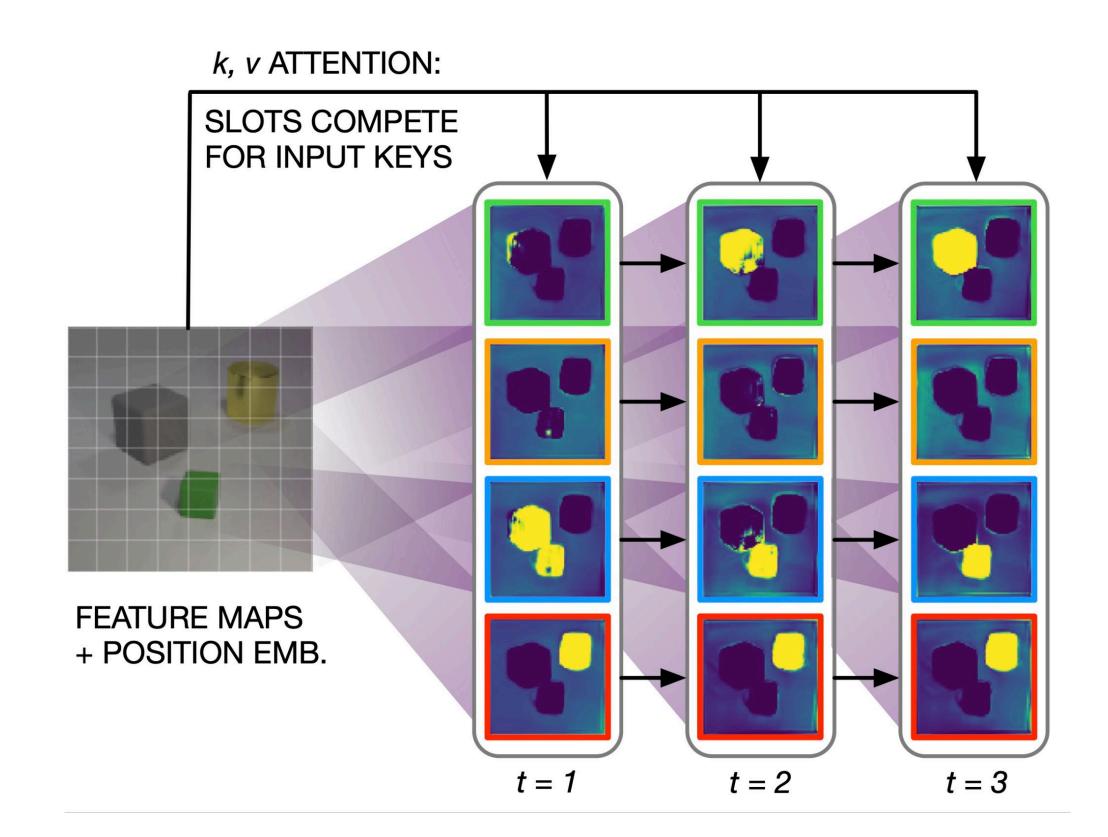
Spatial Slots

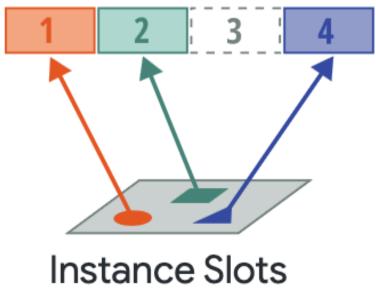
Instance Slots

SA [Locatello el al., 2020] DINOSAUR [Seitzer el al., 2023]



Instance Slots: Slot Attention Encoder



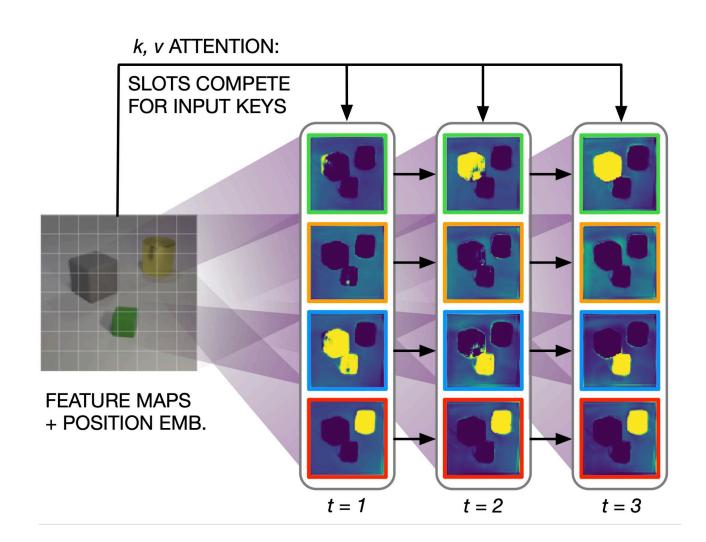


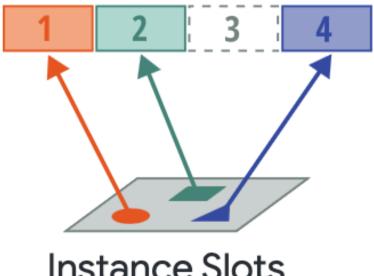
Slot Attention Pseudocode

inputs: feature maps + position embedding slots ~ normal(mean, std) for t = 0 ... T: scores = dot(k(inputs), q(slots)) weights = softmax (scores / t, axis='slots') updates = weighted_mean (weights, v(inputs)) slots = gru(slots, updates) # GRU update

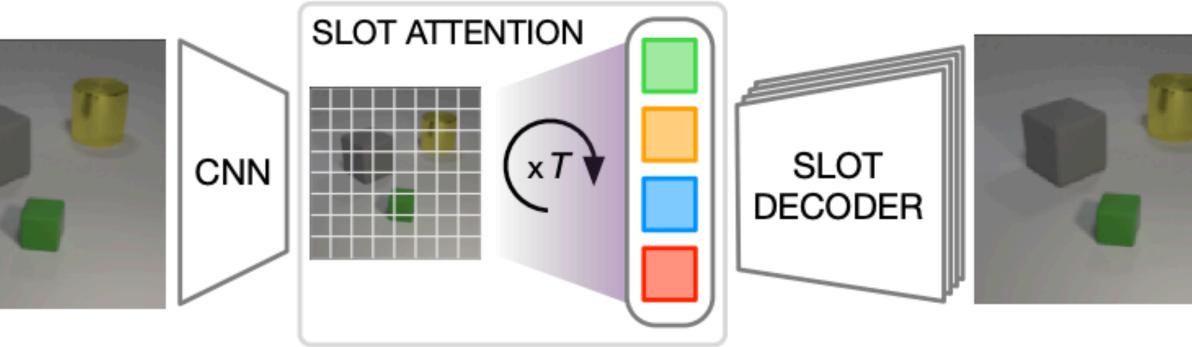
Object-Centric Learning with Slot Attention [Locatello et al.]

Instance Slots: Slot Attention Training



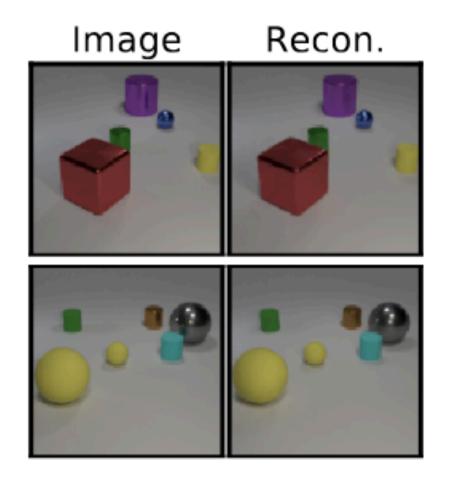


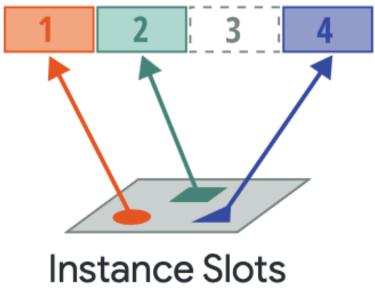
Instance Slots



Object-Centric Learning with Slot Attention [Locatello et al.]

Instance Slots: Slot Attention Results





Object-Centric Learning with Slot Attention [Locatello et al.]

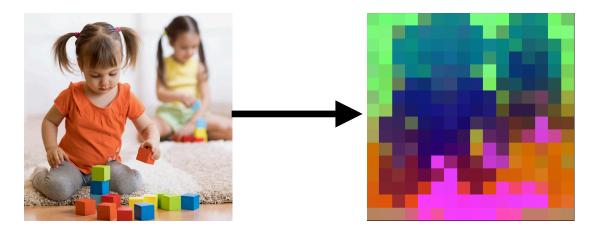
Discovering Object-Centric Structure from the Real-World Video Data

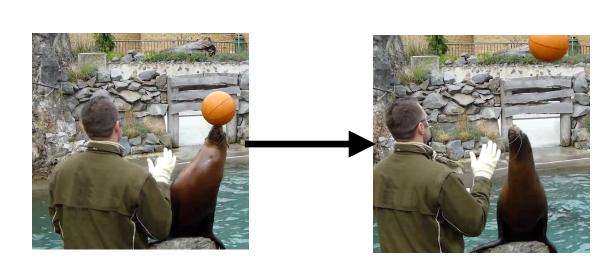
Object-Centric Learning for Real-World Data

Image reconstruction as the target is not enough for grouping real-world scenes

Self-supervised Object-Centric Objectives

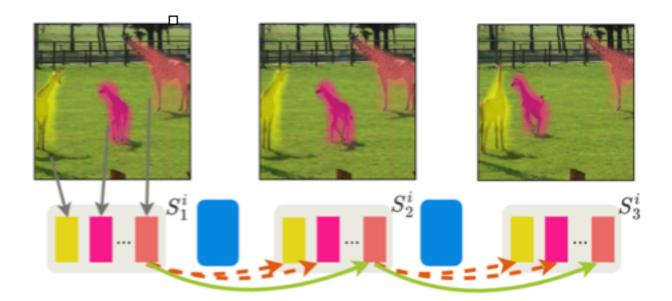
Semantics Reconstruction





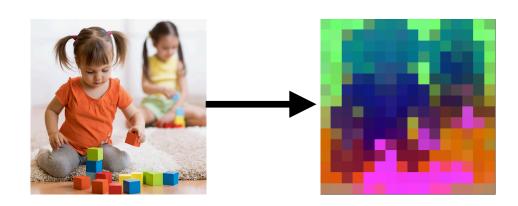
Motion Prediction

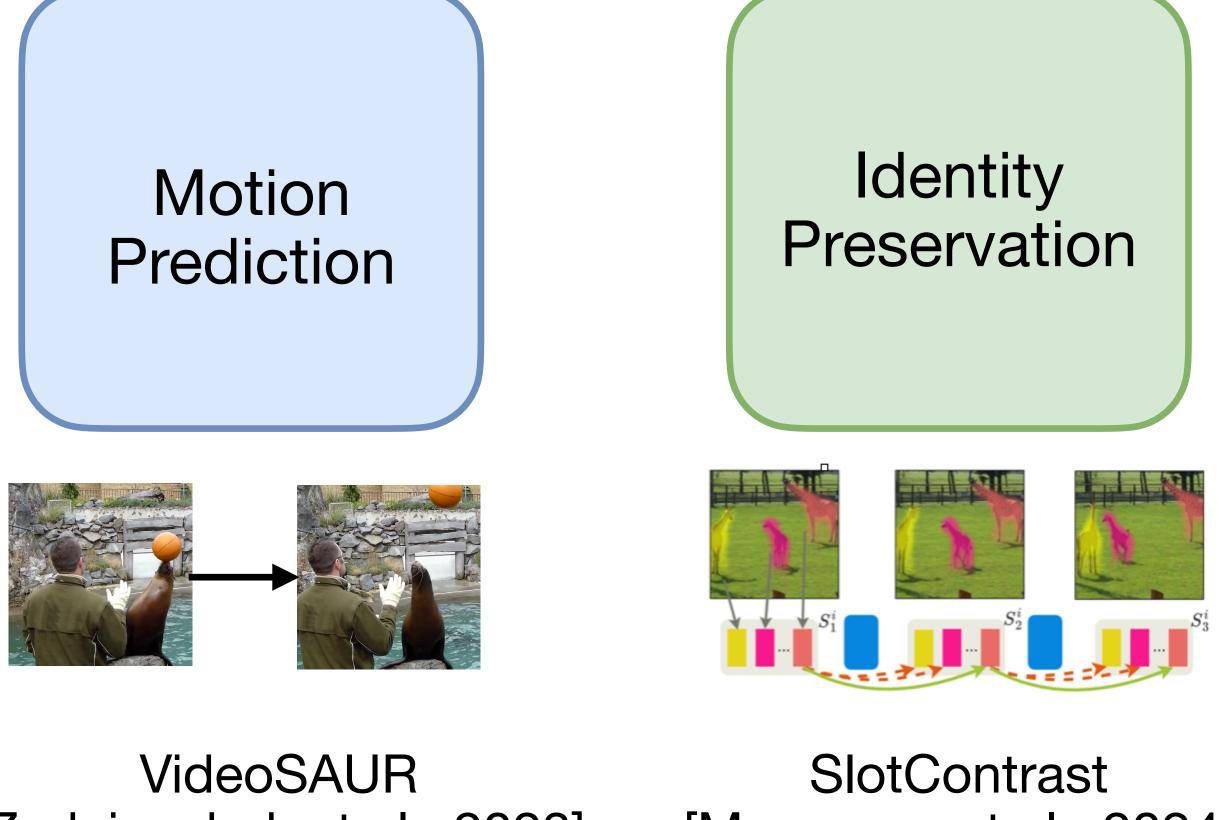
Identity Preservation



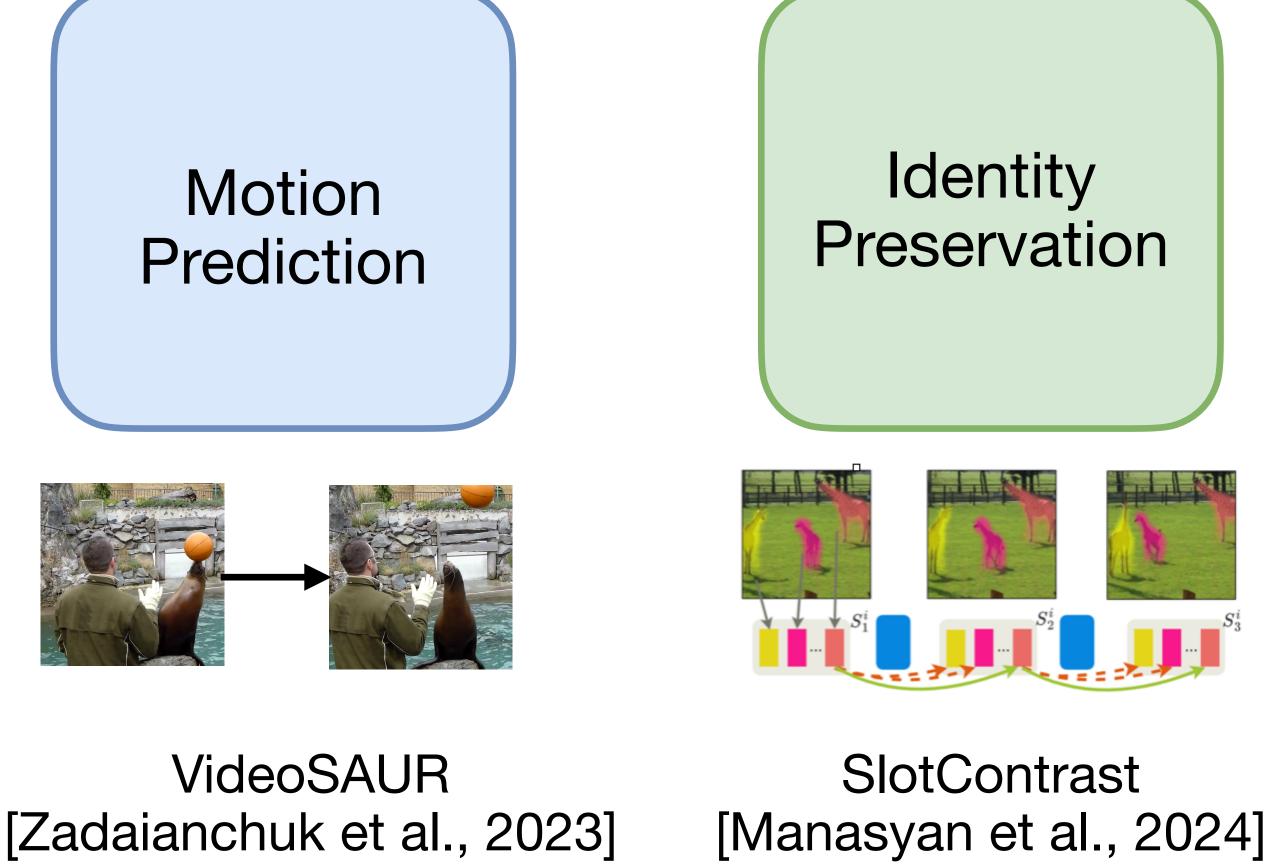
Self-supervised Object-Centric Objectives

Semantics Reconstruction





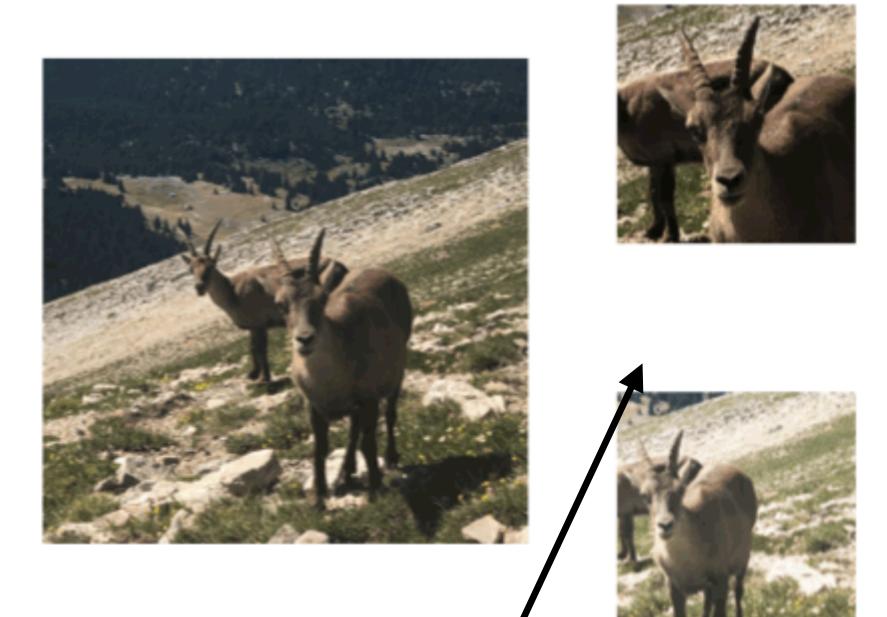
DINOSAUR [Seitzer el al., 2023]



Self-supervised Semantic Features

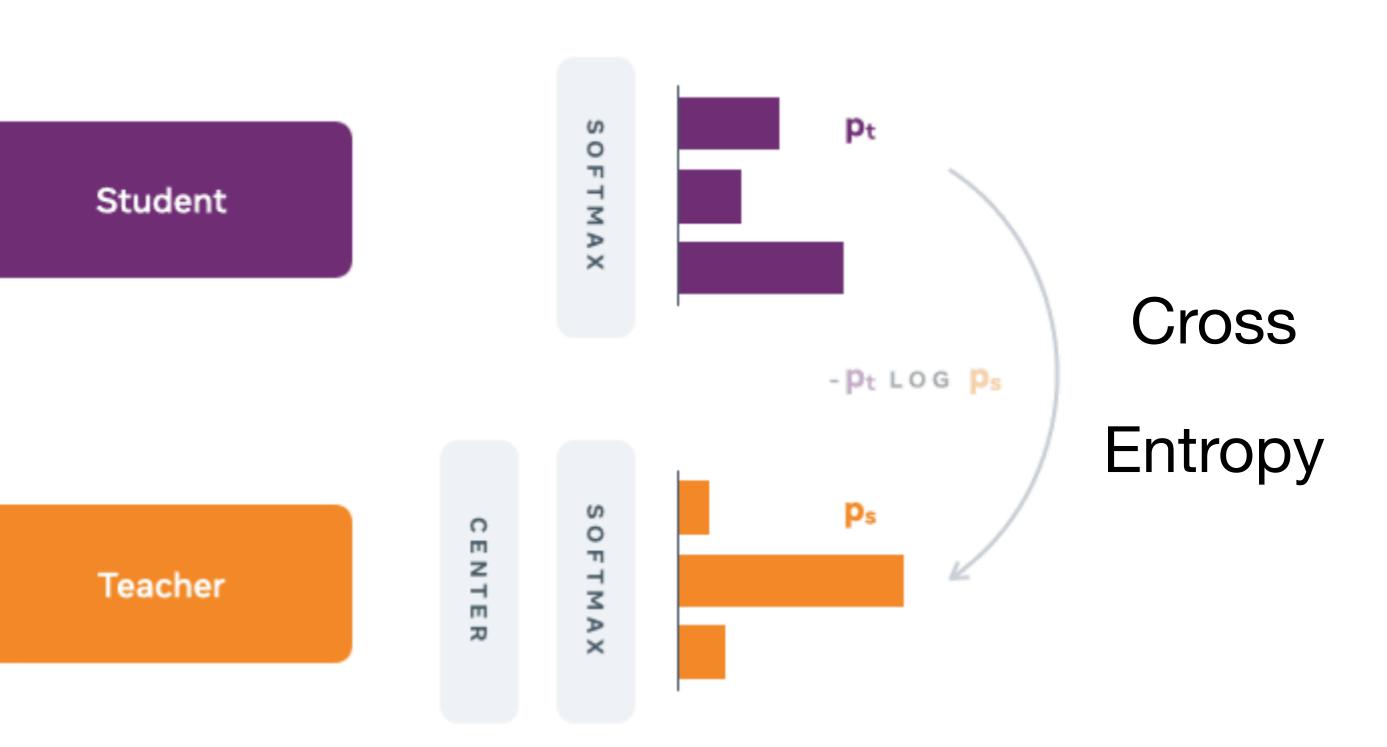
Emerging Properties in Self-Supervised Vision Transformers [Caron el al.]

Self-supervised Semantic Features



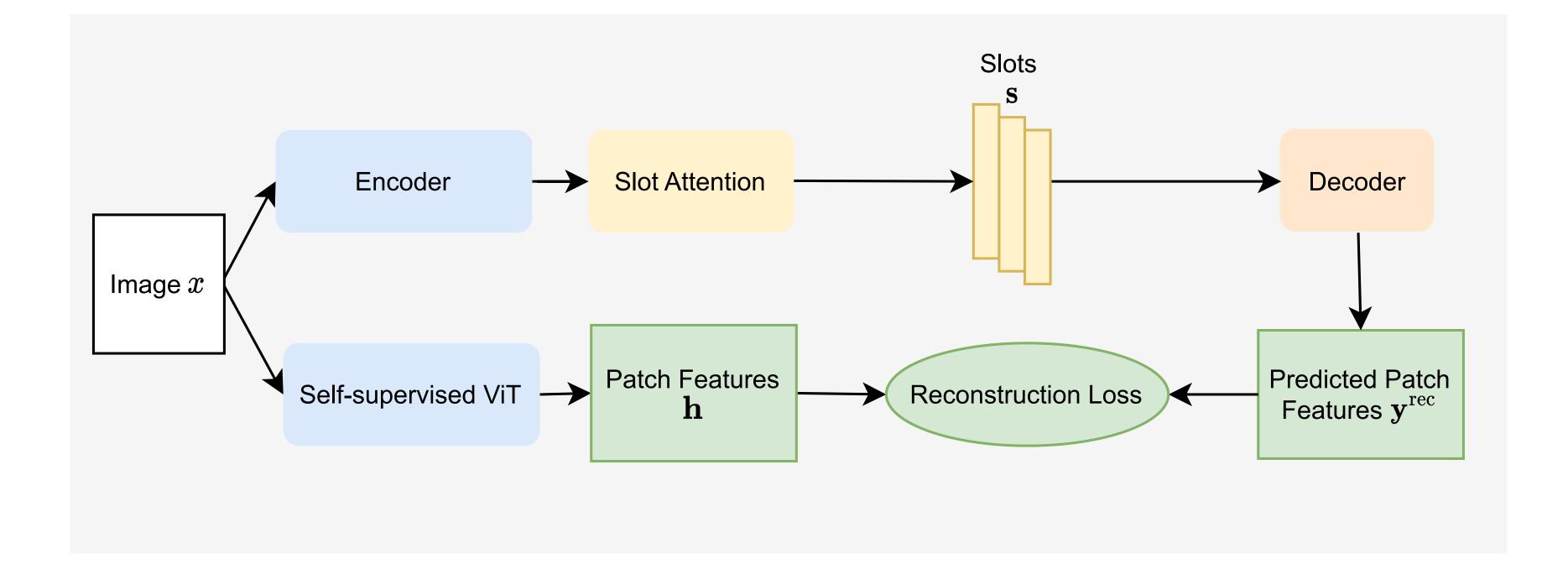
Multi-crop augmentations strategy:

many small crops for student & larger crop for teacher

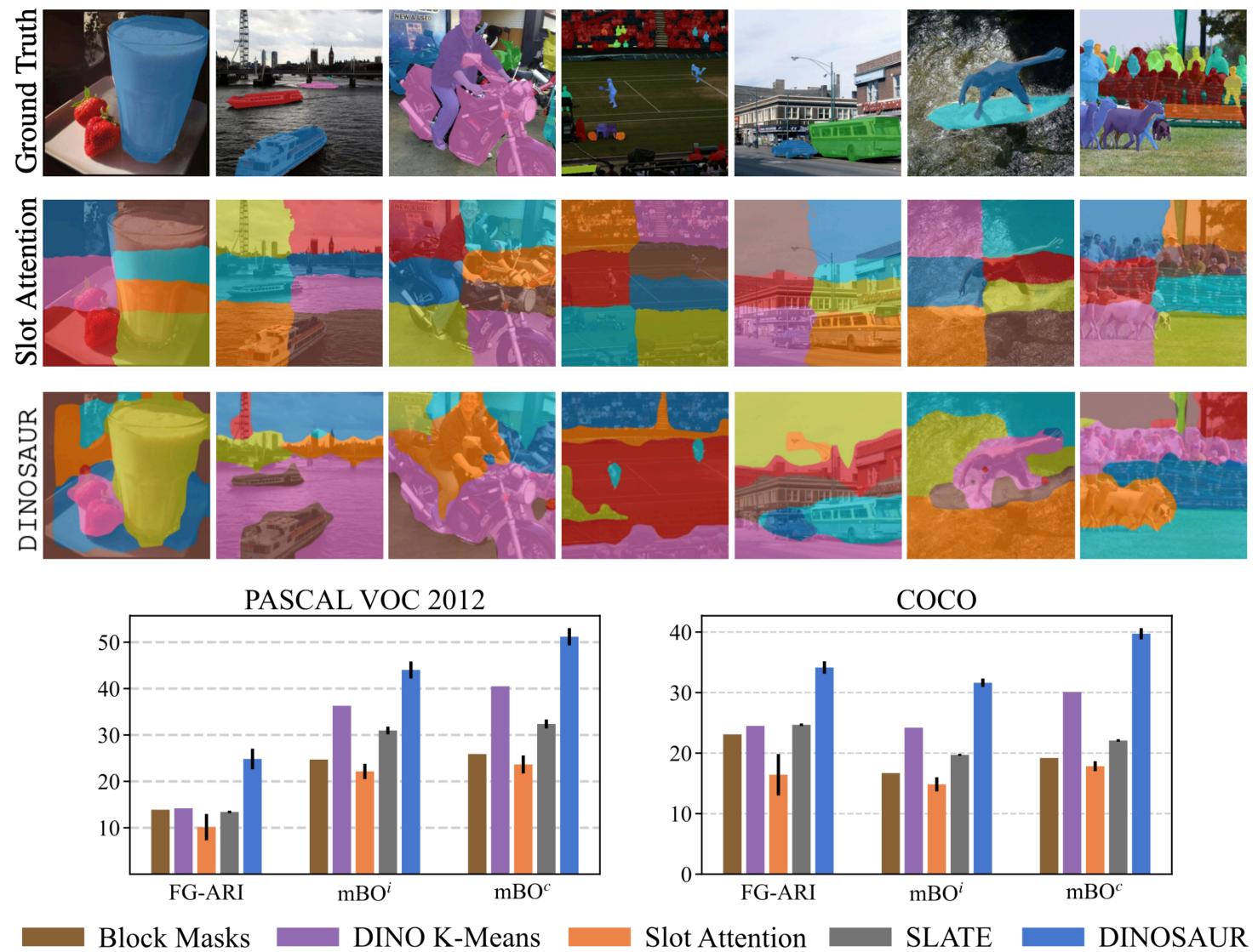


Emerging Properties in Self-Supervised Vision Transformers [Caron el al.]

DINOSAUR: Self-supervised Features as Targets

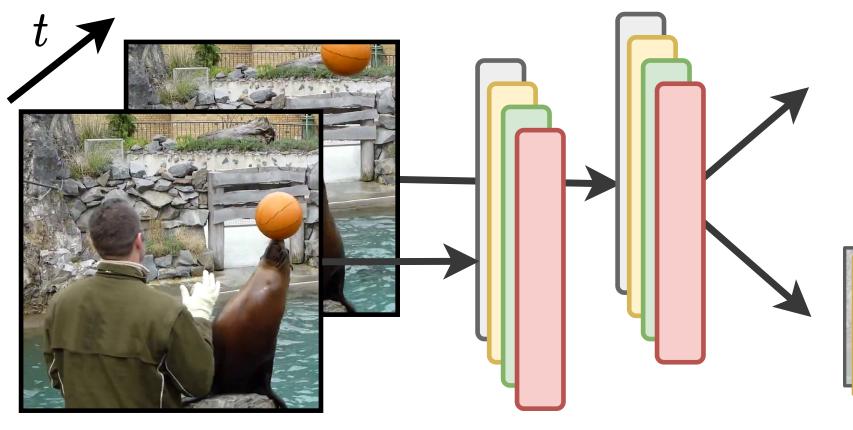


DINOSAUR Results



"Bridging the Gap to Real-World Object-Centric Learning", ICLR 2023 Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Dominik Zietlow, ..., Francesco Locatello

Can we extract even better targets from videos?



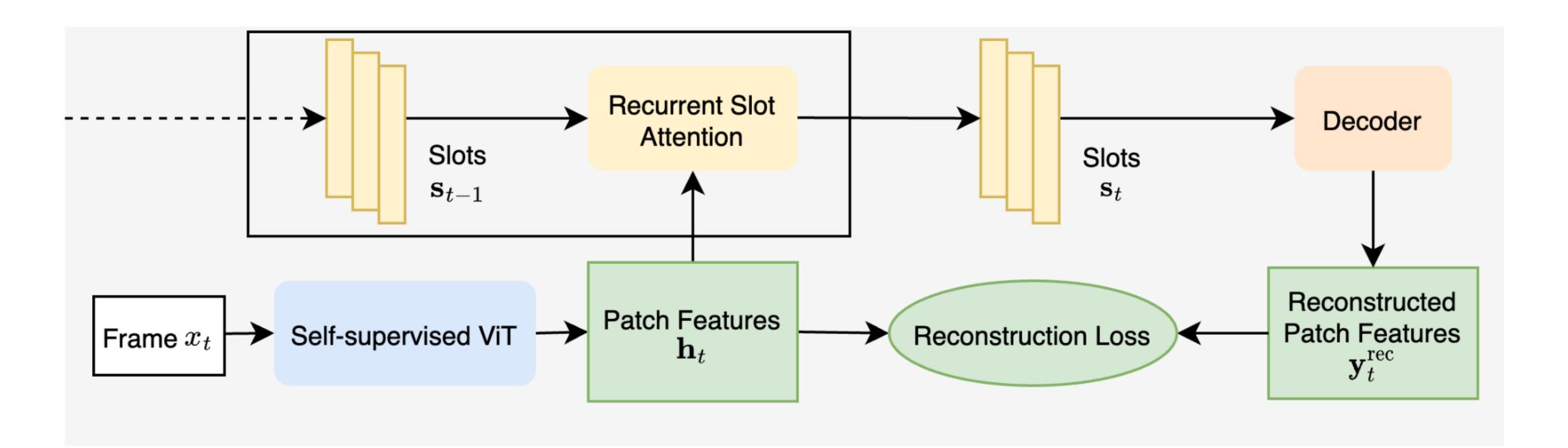
Video

0 •••••

Set Representations

Object masks

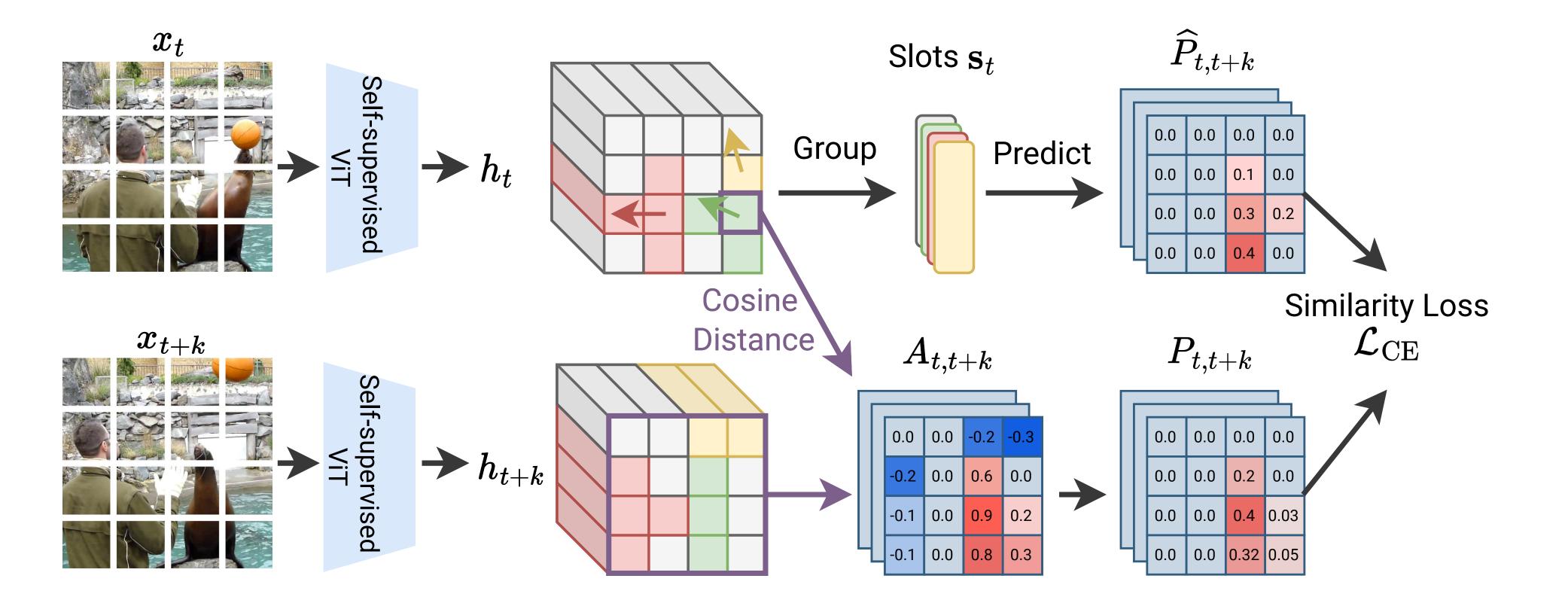
Recurrent Slot Attention for Slot Consistency



- DINOSAUR training objective: reconstruction of the current frame features
- Recurrent SA from SAVi⁹: connects slots from different frames via initialisation of SA iteration

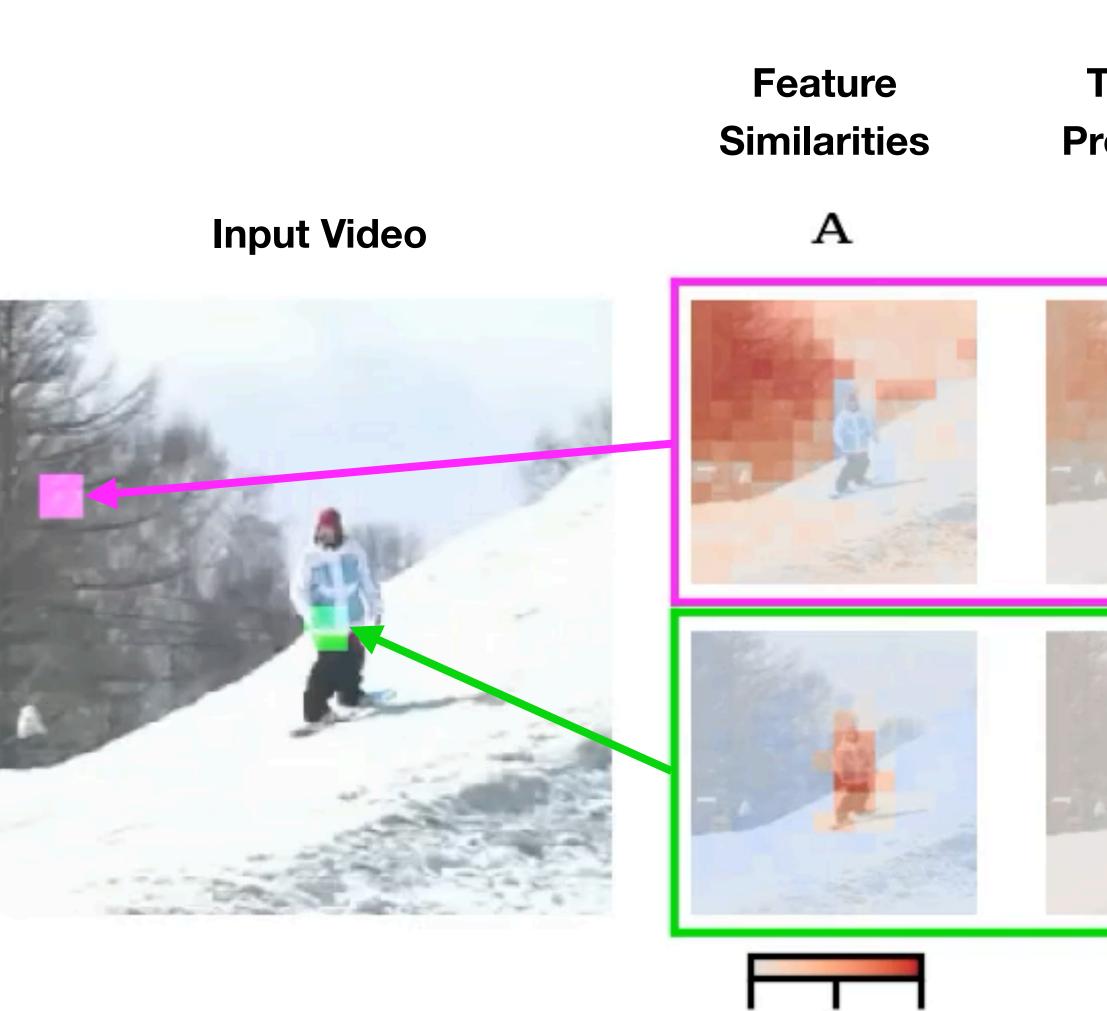
How can we facilitate video object discovery from the temporal structure of the video?

Temporal Features Similarity Prediction



 Successful prediction of the temporal similarity requires combining semantics and motion information

Temporal Features Similarity Prediction



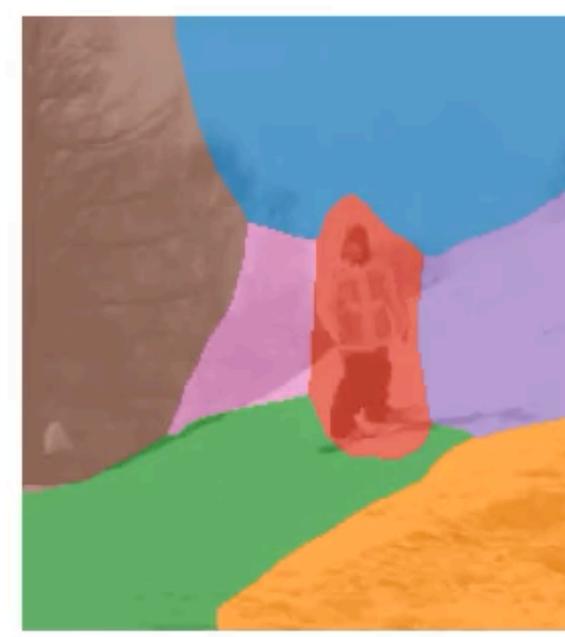
 $0.0\ 0.5\ 1.0$

Transition Probabilities

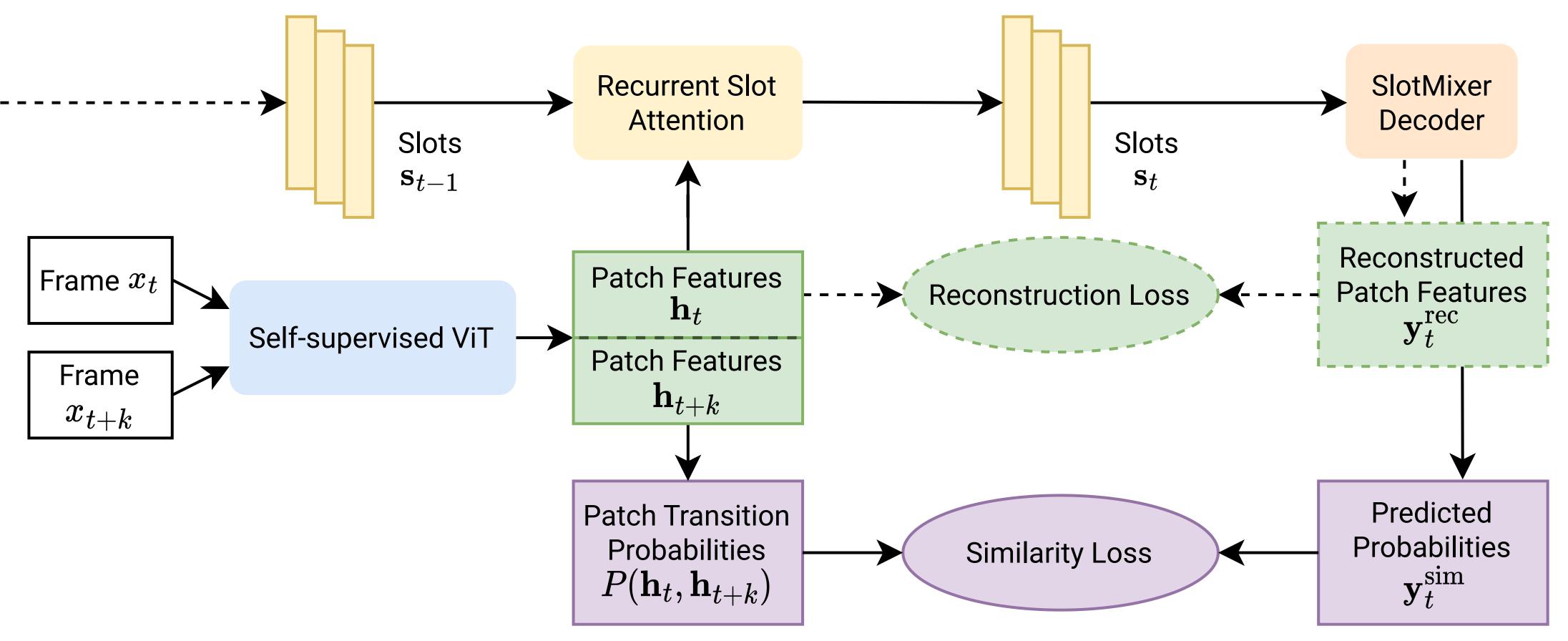
 \mathbf{P}

Transition Probabilities Predictions $\hat{\mathbf{P}}$

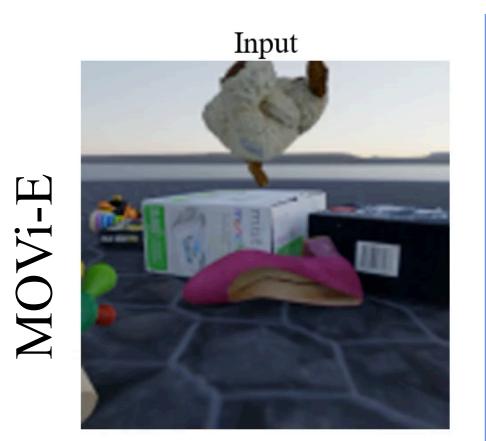
Predicted Masks

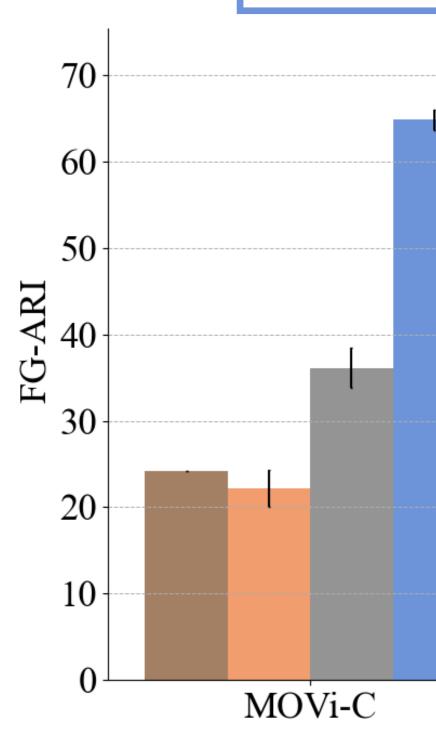


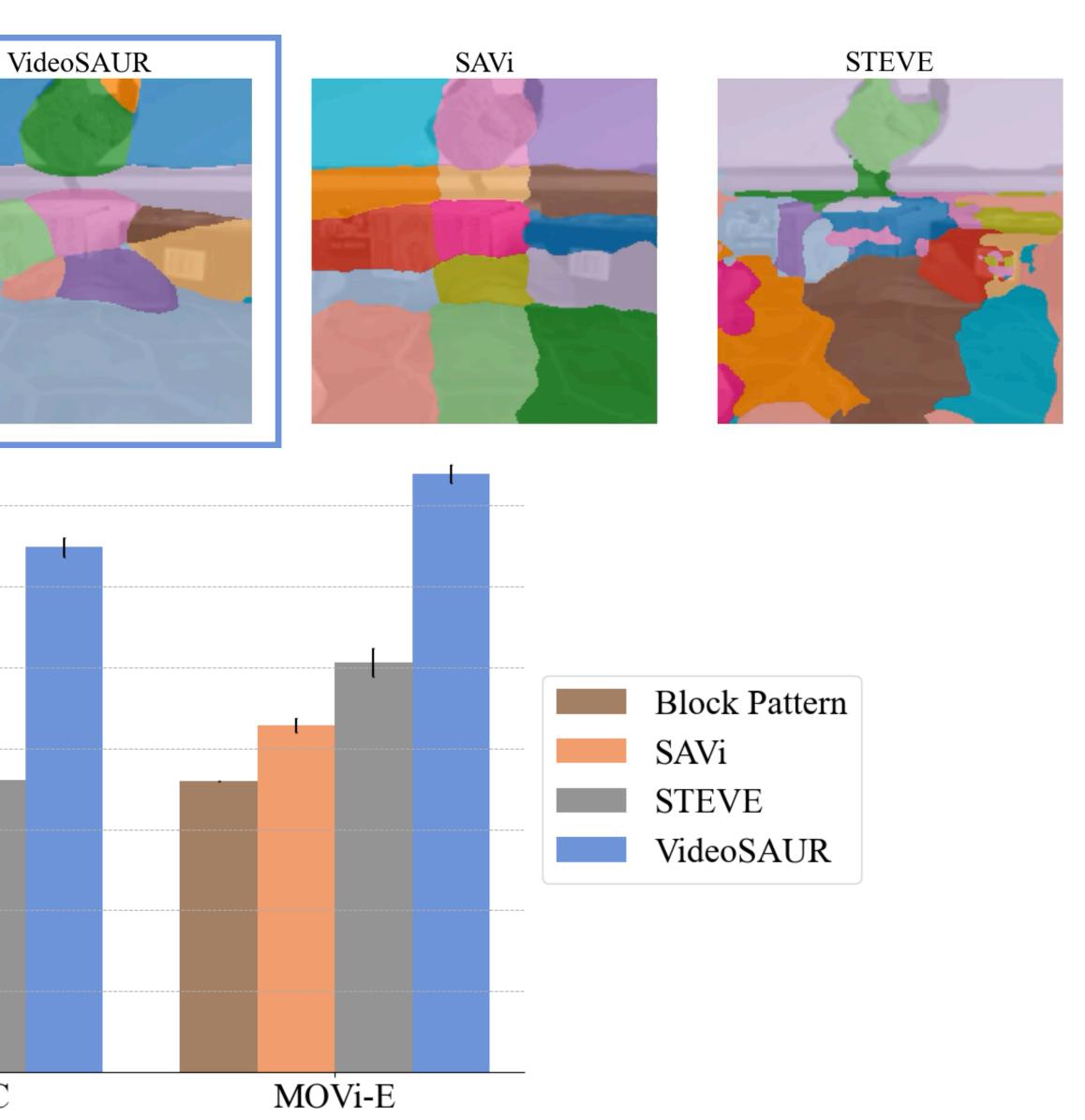
VideoSAUR



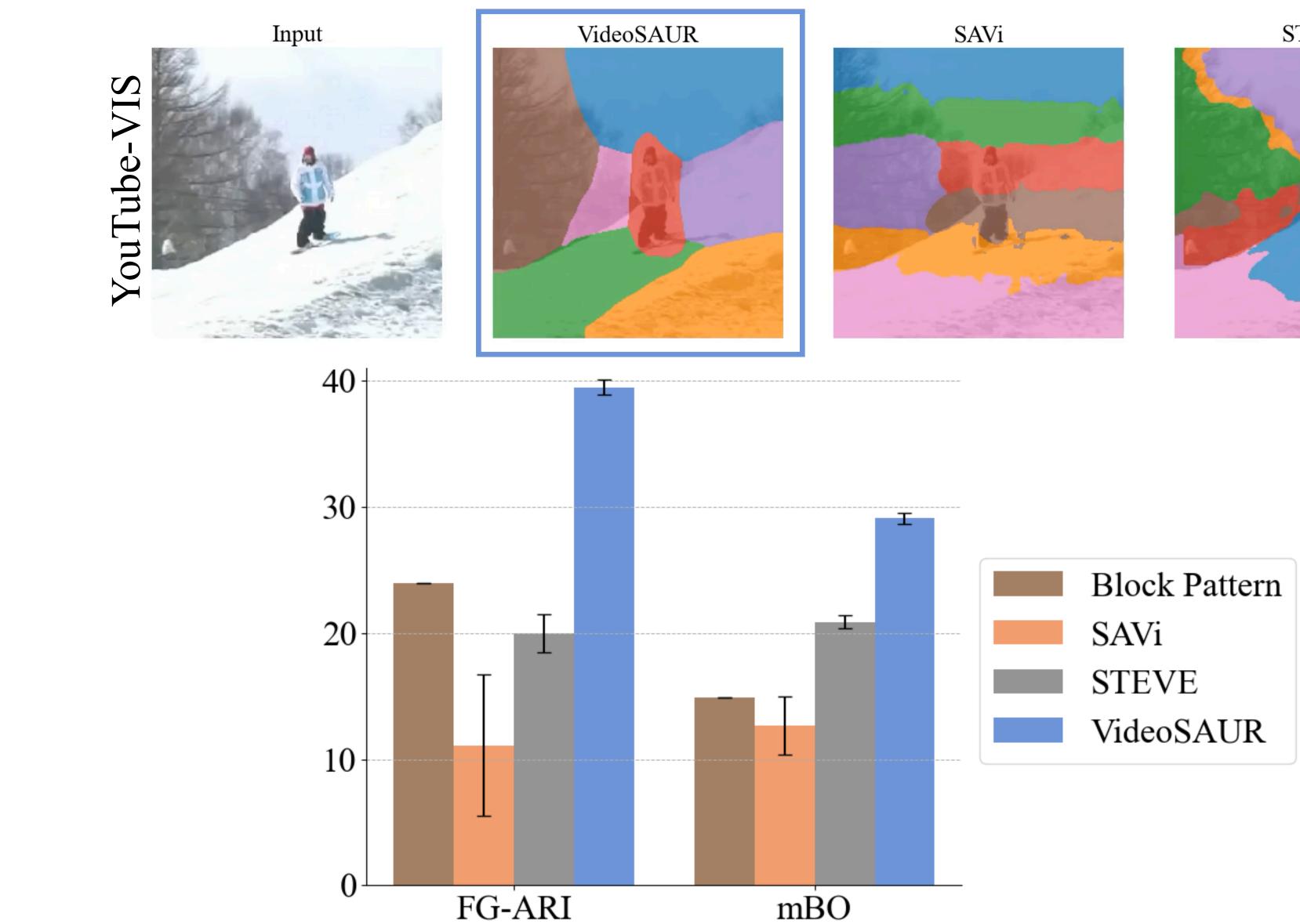
VideoSAUR Results on Synthetic Videos







VideoSAUR Results on Real-World Videos



STEVE

Qualitative VideoSAUR Results

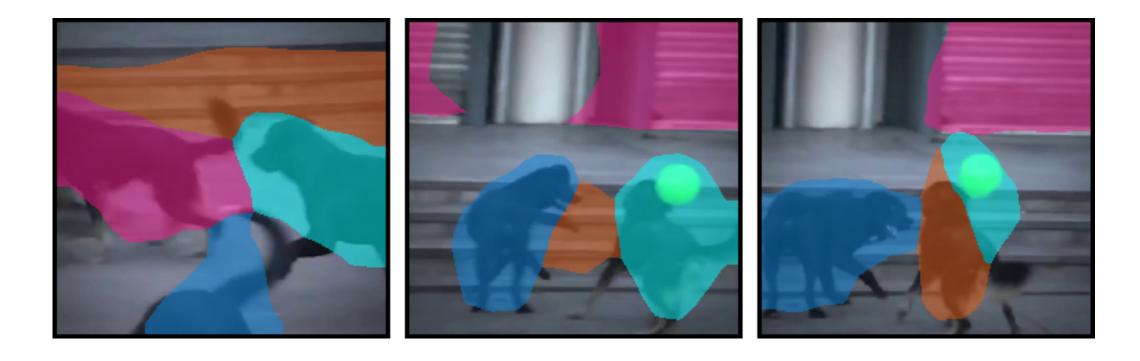
VideoSAUR with DINO-v2 features

What about long-term consistency?

We need to maintain a consistent slot for an object throughout a video sequence.

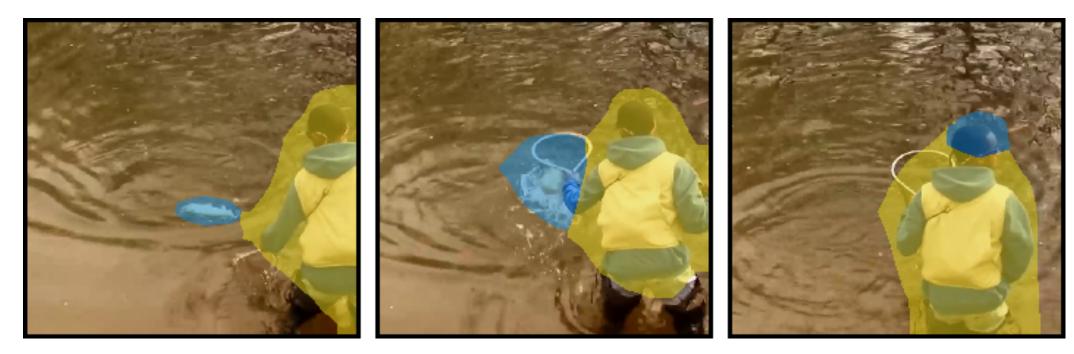
No slot (ID) switches

Assign new slots: Newly appearing objects should use unused slots.

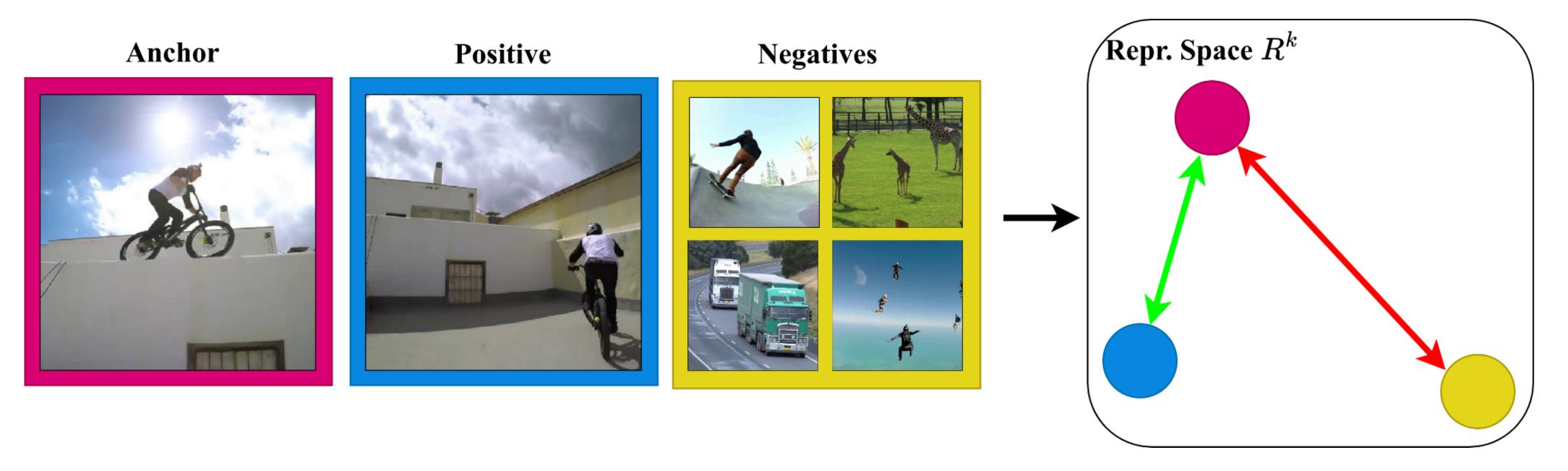


Reassign original slot: Reappeared objects should get their original slot (**object permanence**).

Preserve slot assignments: Do not reuse a slot of a disappeared object.



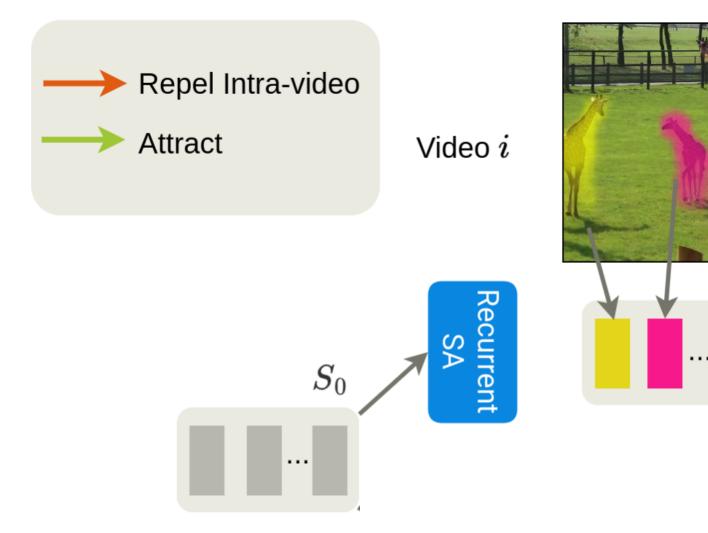
Video-level Contrastive Learning

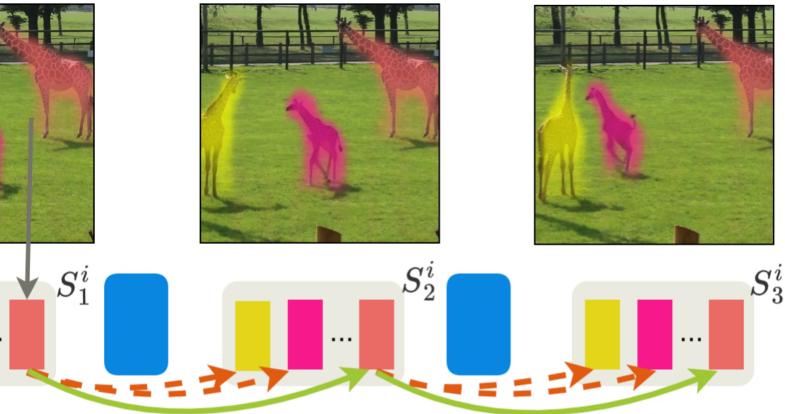


- Attract video frames of the same video
- Rebel frames from different videos in the dataset

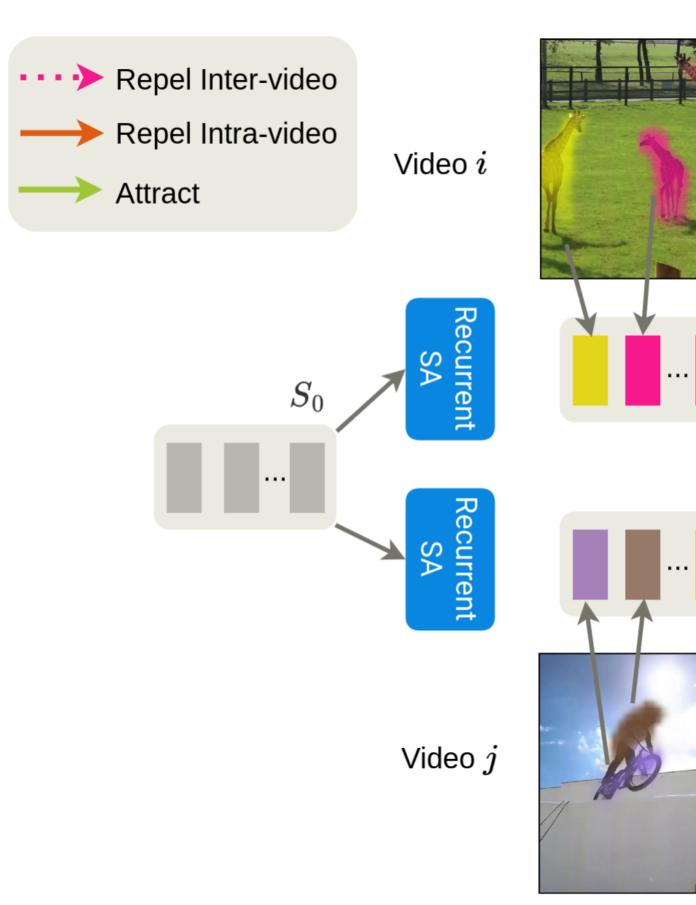
How can we incorporate similar contrastive objective on more granular slot representation level?

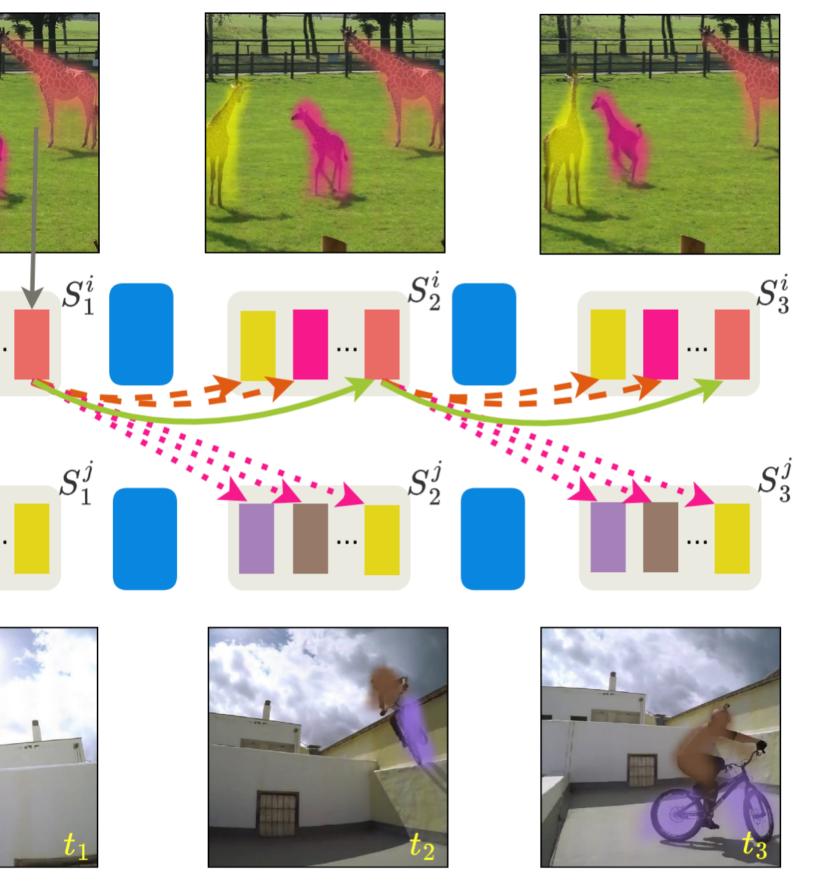
Slot-Slot Contrastive Loss (Intra-Video)



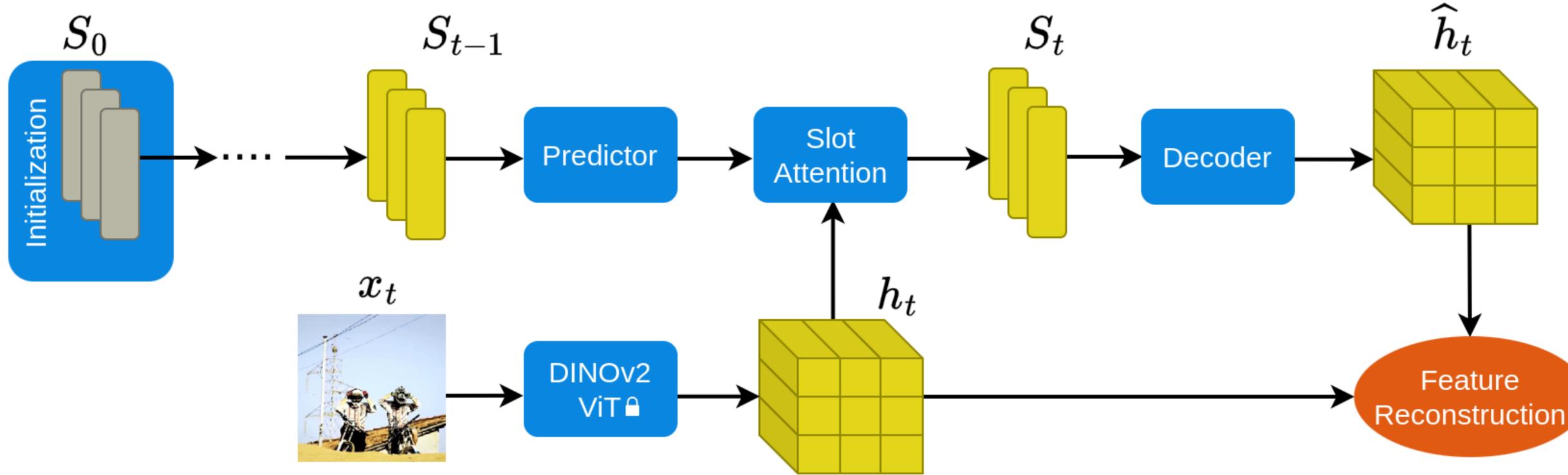


Batch-level Slot-Slot Contrast

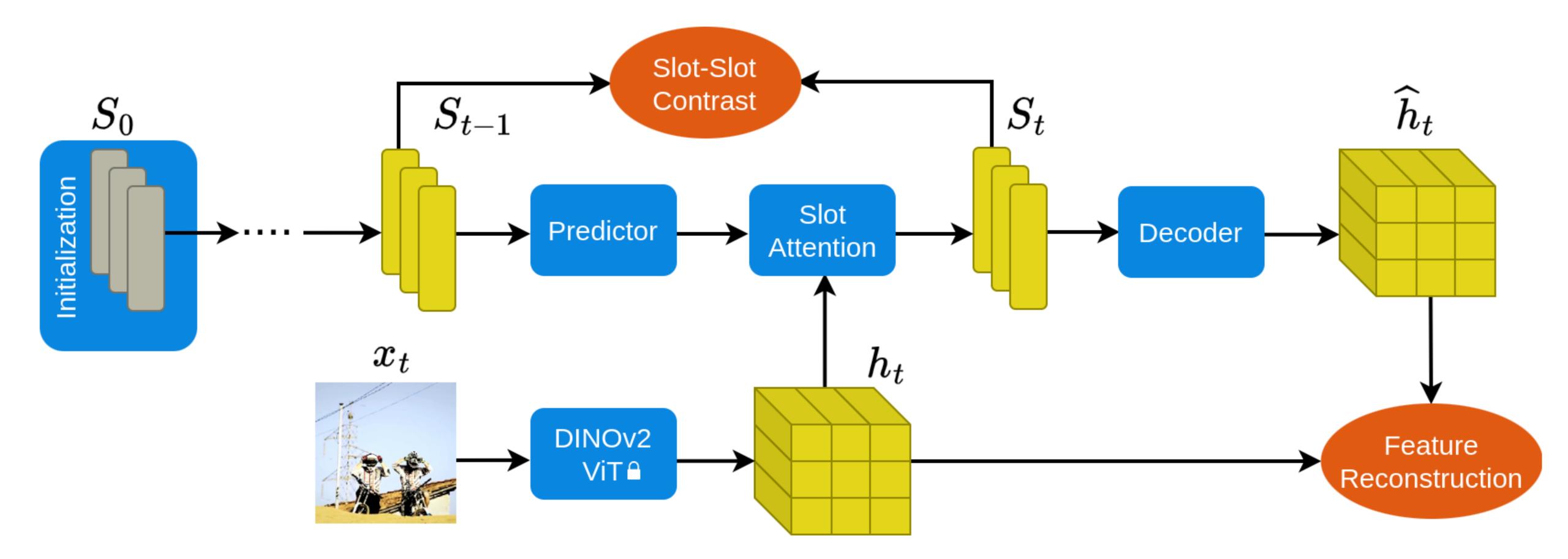




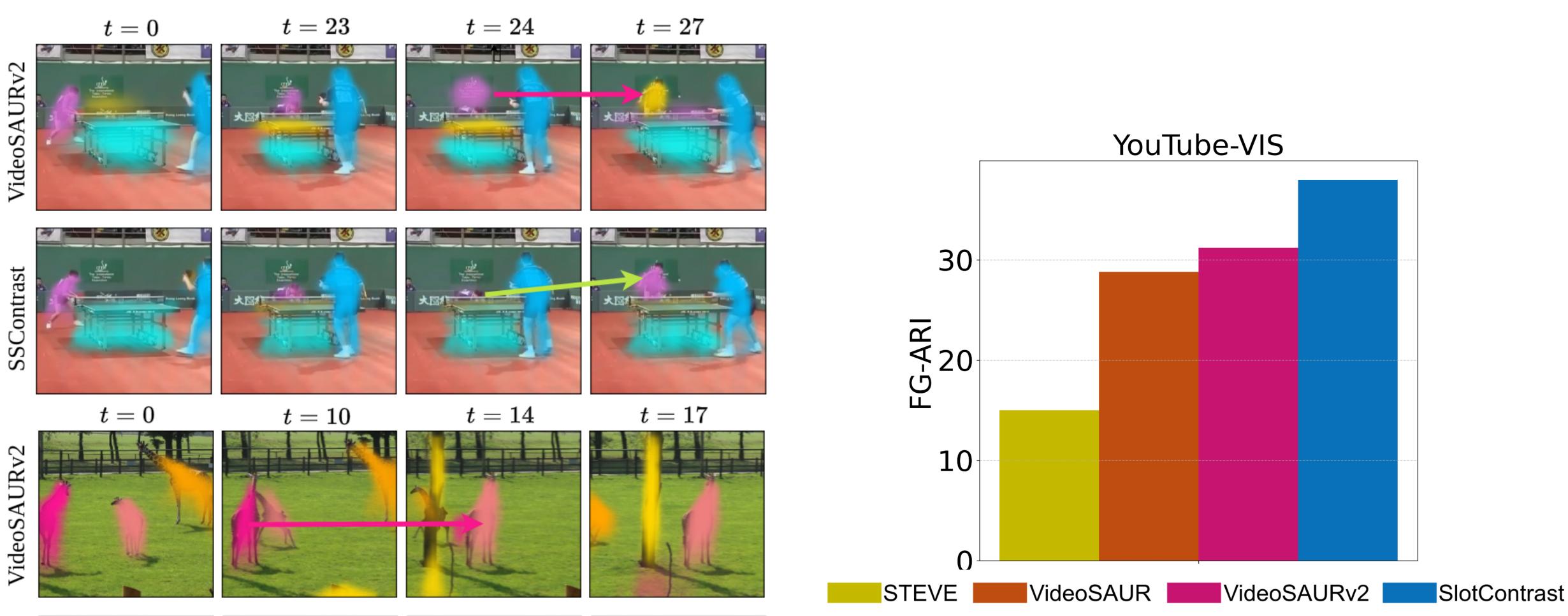
Video Object-Centric Learning Architecture



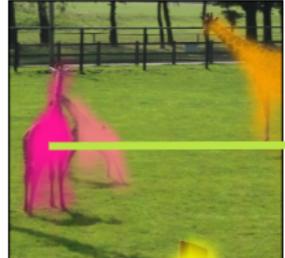
Slot Contrast Architecture

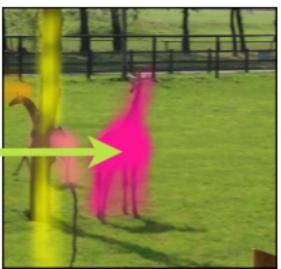


Object Discovery on Real-World Videos



SSContrast

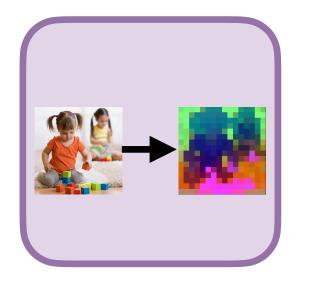




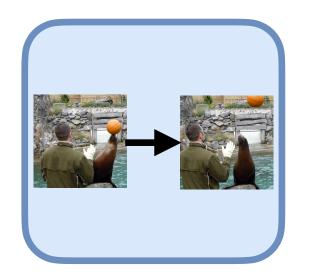


Object Discovery on Real-World Videos

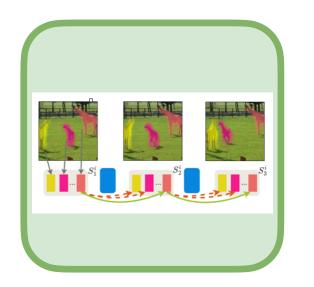
Summary



Semantics reconstruction objective allows to scale object-centric representations to real-world images



Temporal similarity prediction further scales objectcentric representation to real-world videos



 Slot Contrast loss further improves long-term consistency of learned representations