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Why compositional representations?
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Why do we need stuctured representations?

Player has to navigate a maze with multiple rooms in order to find the goal.



What about Zero-Shot Transfer? 

3

A3C

0 7,5 15 22,5 30

IID
Zero-Shot Transfer

Average reward signal on DeepMind Lab

DARLA: Improving Zero-Shot Transfer in Reinforcement Learning [Higgins et al. 2017]

How to represent the world around us robustly?
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Single vector

Representation Learning from Pixels
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Binding Problem in Distributed Representation

Figure: Greff et al. (2020)
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Binding Problem in Distributed Representation

Figure: Greff et al. (2020)
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Binding Problem in Distributed Representation

Figure: Greff et al. (2020)



8

Single vector Dense grid of features

?

Representation Learning from Pixels

What if we can learn representations that are structured similarly to the original scene?
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Do we need structured representations if we have scale? 



Unsurevised Object-Centric Representations
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How humans structure information about scene?  

Objects are good candidates for both! 

We group:


• regions that are largely independent of their context


• regions that exhibit strong internal predictive structure



Why compositional representations?
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Objects are building blocks of the visual scene?

• Instance segmentation and tracking


• Visual reasoning and planning


• Combinatorial generalization



Unsurevised Object-Centric Representations
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Object-centric 

representations

• Different objects are represented 
by different vectors


• Those vectors are grounded on 
particular image segments 


• Trained end-to-end with 
architectural inductive biases 
and self-supervision objectives

Unsurevised Object-Centric Representations



Unsupervised Representation Learning
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Object-Centric Representation Learning
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Object-Centric Representation Learning
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Object-Centric Representation Learning
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Scene Decomposition Into Objects
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Scene Decomposition Into Objects

• Dense pixels / features should be separated into discrete set of 
vectors or slots 

• Routing problem: which vector is responsible for which object?

Figure: Greff et al. (2020)



Different ways to decompose the scene
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Different Ways to Decompose

Encoder inductive biases could be categorised in terms of 
encoder outputs named slots:


• Sequential slots → ordered sequence of vectors


• Spatial slots → sparse grid of vectors


• Instance slots → permutation-invariant set of vectors
Figure: Greff et al. (2020)



Different ways to decompose the scene
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Different Ways to Decompose

AIR [Eslami et al., 2016]


SQAIR [Kosiorek et al, 2018]


MONet [Burgess et al., 2019]

SPAIR [Crawford & Pineau, 2019]


SPACE [Lin et al., 2020]


SCALOR [Jiang et al., 2020]

SA [Locatello el al., 2020]


DINOSAUR [Seitzer el al., 2023]

Figure: Greff et al. (2020)



Instance Slots: Slot Attention Encoder

20 Object-Centric Learning with Slot Attention [Locatello et al.]



Instance Slots: Slot Attention Training

21 Object-Centric Learning with Slot Attention [Locatello et al.]



Instance Slots: Slot Attention Results

22 Object-Centric Learning with Slot Attention [Locatello et al.]



Discovering Object-Centric Structure  
from the Real-World Video Data



Object-Centric Learning for Real-World Data

 

Image reconstruction as the target is not enough for grouping real-world scenes



Self-supervised Object-Centric Objectives

Semantics 
Reconstruction

Motion 
Prediction

Identity 
Preservation



Self-supervised Object-Centric Objectives

Semantics 
Reconstruction

Identity 
Preservation

Motion 
Prediction

DINOSAUR  
[Seitzer el al., 2023]


VideoSAUR 
[Zadaianchuk et al., 2023]

SlotContrast  
[Manasyan et al., 2024]



Self-supervised Semantic Features

Emerging Properties in Self-Supervised Vision Transformers [Caron el al.]27



Self-supervised Semantic Features

Emerging Properties in Self-Supervised Vision Transformers [Caron el al.]

Multi-crop augmentations strategy: 


many small crops for student & 
larger crop for teacher28

Cross 


Entropy



DINOSAUR: Self-supervised Features as Targets

Slot Attention

Self-supervised ViT Patch Features
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*e.g. DINO by Cathilde Caron at el.29



DINOSAUR Results

 

“Bridging the Gap to Real-World Object-Centric Learning”, ICLR 2023

Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Dominik Zietlow, …, Francesco Locatello
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Can we extract even better targets from videos?

Set
Representations

Video Object
masks

Downstream
tasks
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Recurrent Slot Attention for Slot Consistency

• DINOSAUR training objective: reconstruction of the current frame features


• Recurrent SA from SAVi9: connects slots from different frames via initialisation of 
SA iteration

How can we facilitate video object discovery 

from the temporal structure of the video?

[9] Kipf et al. Conditional Object-Centric Learning from Video. ICLR 202232



Temporal Features Similarity Prediction
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• Successful prediction of the temporal similarity requires 
combining semantics and motion information
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Temporal Features Similarity Prediction

Feature  
Similarities 

Input Video Predicted Masks

Transition  
Probabilities

Transition  
Probabilities 
Predictions
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VideoSAUR

Recurrent Slot
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SlotMixer
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VideoSAUR Results on Synthetic Videos
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VideoSAUR Results on Real-World Videos
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Qualitative VideoSAUR Results

VideoSAUR with DINO-v2 features
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What about long-term consistency?
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We need to maintain a consistent slot for an object throughout a video sequence.

Reassign original slot: Reappeared objects should 
get their original slot (object permanence).

No slot (ID) switches

Preserve slot assignments: Do not reuse a slot of 
a disappeared object. 

Assign new slots: Newly appearing objects 
should use unused slots.



Video-level Contrastive Learning
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• Attract video frames of the same video 


• Rebel frames from different videos in the dataset

How can we incorporate similar contrastive objective on more granular 

slot representation level?



Slot-Slot Contrastive Loss (Intra-Video)
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Batch-level Slot-Slot Contrast
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Video Object-Centric Learning Architecture



Slot Contrast Architecture



Object Discovery on Real-World Videos



Object Discovery on Real-World Videos



 Summary

• Semantics reconstruction objective allows to scale 
object-centric representations to real-world images 

• Temporal similarity prediction further scales object-
centric representation to real-world videos

• Slot Contrast loss further improves long-term 
consistency of learned representations 


