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Abstract

Computer vision has been first revolutionized since the year 2000. Learning 
from examples became leading. Another revolution happened in 2012, with 
deep learning from examples. The latest revolution happened in 2022, with 
the introduction of foundation models.

Progress in computer vision by learning is fast. In the course we will discuss 
recent methods presented by researchers who are all very active in the field. 

The course is supplemented with practical work and is completed with an 
assignment.



Where and When

Monday 13th to Thursday 16th of January

   Lectures  09:30-12:00      Turing

   Lunch (included) 12:00-13:30      Newton

   Lab   13:30-16:00      Euler 

  

Friday 17th of January

   Invited tutorial 09:30-12:00      Turing

   Lunch (included) 12:00-13:30      Newton



Program

Monday  Foundations

Tuesday  Machine learning for computer vision

Wednesday  3D vision by learning

Thursday  Computer video by learning

Friday   Invited tutorial by Yuki Asano

Pascal Mettes Martin Oswald Dimitris Tzionas

Yuki Asano

Hazel Doughty

Guest speakers

Andrii Zadaianchuk



http://computervisionbylearning.info

Lab

Practical 1 Vision by multi-layer perceptron 

Practical 2         Vision by convnet

Practical 3 Vision by transformer

Practical 4 Vision by geometric learning or Vision by self-supervised learning

TA team every afternoon available for support.

Each group of 2 students submits a report about their findings during the practicals. 
Your report should have roughly 1 page per practical, with a maximum of 8 pages. See 
lab assignments for all details on format, questions, PyTorch code etc.

Deadline: January 31th, 2025

http://computervisionbylearning.info/


What foundation models 
cannot perceive 

Prof. dr. Cees Snoek
University of Amsterdam

Head of Video & Image Sense lab
Scientific Director Amsterdam AI



@@@Kwal



@@@Cambrische explosie



Human vision consumes 50% brain power

Van Essen, Science 1992



Human invention of written language

Source: wikipedia



Human invention of ChatGPT

OpenAI, 11/2022



Vision and language even more powerful

1. Collect millions of images and their description from the Internet

2. Learn associations between encoded image and text

3. Amazing zero-shot abilities

CLIP, 7/2021



What works well in vision and language?

Flamingo, 11/2022



What works well in vision and language?

BLIP-2, 6/2023



This talk

Looks into what multimodal foundation models cannot perceive:

1. Scarcity

2. Space

3. Time

4. Human values



1. Scarcity
Yunhua Zhang, Hazel Doughty, Cees G M Snoek: Low-Resource Vision 
Challenges for Foundation Models. In: CVPR, 2024.

Yunhua Zhang Hazel Doughty



Low-Resource Natural Language Processing

No previous works on low-resource vision tasks.

Hedderich et al. ACL 2020



High-resource vs. Low-resource



Circuit diagram classification



Historic map retrieval



Mechanical drawing retrieval



Low-Resource Image Transfer Evaluation

Task Formulation Train Val Test

Circuit Diagram Classification Image Classification 154 100 1,078

Historic Map Retrieval Image-to-Image Retrieval 102 140 409

Mechanical Drawing Retrieval Image-to-Image Retrieval 300 100 754

Number of images (or image pairs) per split

We have collected as much data as we can find freely available online for each task, yet, 
the amount of data is still incredibly small showing how low-resource these tasks are. 



Poor performance for low-resource vision challenges
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Mechanical Drawing Retrieval

Historic map retrieval

Circuit diagram classification SAM BLIP CLIP ImageBind



Low-Resource Vision Challenges

Our goal: adapt foundation models, pre-trained on large-scale 
datasets, to low-resource tasks.  

Challenge I: Data Scarcity

Challenge II: Fine-Grained

Challenge III: Specialized Domain

Baseline I: Generated Data for Data Scarcity

Baseline II: Tokenization for Fine-Grained

Baseline III: Attention for Specialized Domains



Baseline I: Generated Data for Data Scarcity

We generate images close to the input image where the label is preserved 
as well as more diverse images which break the label. 

𝐿task

𝐿label−breaking

Low-Resource

Image

Label-Preserving

Augmentation Label-Breaking Augmentation

Generative

Model

Generative

Model

𝐿 =  𝐿task +  𝜆𝐿label−breaking



Circuit diagram examples

FM Transmitter

Label-Preserving Label-Breaking

Original Image



Baseline II: Tokenization for Fine-Grained

As we have limited data we cannot train a tokenization layer from scratch

Instead, we divide the linear projection kernel into sub-kernels for image patches.

Then create patch-level features with a learned weighting

⋮
Original Kernel

Sub-kernels

⋮
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⋮

Divide
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Baseline III: Attention for Specialized 
Domains

1. Learn global attention maps 
with common patterns particular 
to the specialized domain

2. For each token, crop its region 
from the global attention map.

3. Combine with multi-head self-
attention. 

Cropped Map

Cropped Map

Attention for Specialized Domain

Feature Token



Results of baselines for the three challenges

Challenge I: 
Data Scarcity

Challenge III: Specialized Domain
Challenge II: 
Fine-Grained



Effective adapter for several foundation 
models

Recall@1 ↑ Recall@1 ↑

Recall@1 ↑Recall@1 ↑

Results for Historic Map Retrieval

30 35

Our Baselines

AdaptFormer

Zero-Shot Transfer

CLIP

0 10 20

BLIP

27 32 37

ImageBind
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SAM



Qualitative results: hard samples

Our predictions are overconfident, often basing predictions on one key region such 
as the presence of the battery in the LED circuit. 

We cannot yet generalize to rare image styles such as used for the Innsbruck map

Motor Driver

BellLED

Audio Amplifier

Innsbruck, Austria

Innsbruck, Austria

Cuneo, Italy

Brugge, Belgium

Leuven, Belgium

Brugge, Belgium

Model Input

Prediction

Groundtruth



2. Space
Michael Dorkenwald, Nimrod Barazani, Cees G M Snoek, Yuki M Asano: PIN: 
Positional Insert Unlocks Object Localisation Abilities in VLMs. In: CVPR, 2024.

Michael Dorkenwald Nimrod Barazani Yuki Asano



Special purpose object localization is very 
mature

w/ Kien Nguyen et al. CVPR 2022 / ICLR 2024
w/ Aritra Bhowmik et al. ICCV 2023



Can vision-language models localize objects?



Perhaps we need another type of prompt?



Can vision-language models do spatial reasoning?



Our proposal

Frozen VLM,

e.g. Flamingo

PIN: positional 

learnable prompt

Synthetic

images

Self-generated 

supervision signal



Vanilla Flamingo next token prediction

In the image is a 

monkey.

Large Language ModelFusion 
Network

Alayrac, et al. Flamingo: a visual language model for few-shot learning. In NeurIPS, 2022.

Frozen VLM  

Prompt



Positional Insert (PIN)

PIN In the image is a monkey located at 

MLP
Constant Sinusoidal 

embedding

Large Language ModelFusion 
Network

Frozen VLM  
Trained weights

Prompt



Positional Insert (PIN)

In the image is a dog located at 

?

Large Language ModelFusion 
Network

Frozen VLM  
Trained weights

Prompt

PIN

MLP
Constant Sinusoidal 

embedding



Do we need labeled data?

In the image is a dog located at 

[150, 10, 224, 120]

Large Language ModelFusion 
Network

Annotated data

Frozen VLM  
Trained weights

Prompt

PIN

Constant Sinusoidal 
embedding

MLP



Self-generated supervision signal

Generate objects via Stable Diffusion for 1203 categories from LVIS. 

Paste objects into BG20k background dataset

Hanqing Zhao et al. X-Paste: Revisiting Scalable Copy-Paste for Instance Segmentation using CLIP and Stable Diffusion. ICML 2023.
Jizhizi Li et al. Bridging composite and real: towards end-to-end deep image matting. IJCV 2022.



Self-generated supervision signal



Training

C

Synthetic data generation

C

Self-generated supervision



Training: next-token prediction

In the image is a monkey located at 

[150, 10, 224, 120]

Large Language ModelFusion 
NetworkC

Self-generated supervision

Frozen VLM  
Trained weights

Prompt

PIN

Constant Sinusoidal 
embedding

MLP

Only the MLP parameters are optimized



Inference

In the image is a banana located at 

[80, 80, 200, 180]

Large Language ModelFusion 
Network

Frozen VLM  
Trained weights

Prompt

PIN

Constant Sinusoidal 
embedding

MLP



The PIN module unlocks spatial localisation



The PIN module unlocks spatial localisation



PIN outperforms PEFT alternatives

Open Flamingo BLIP-2



3. Time
Piyush Bagad, Makarand Tapaswi, Cees G M Snoek: Test of Time: Instilling 
Video-Language Models with a Sense of Time. In: CVPR, 2023.

Piyush Bagad Makarand Tapaswi



• Foundation models: Language interface + a few (or no) training samples

The problem

What does this picture show?

“A dog running”



• Foundation models: Language interface + a few (or no) training samples

• Particularly attractive for videos given high cost

The problem

What does this video show?

“A kid eating ice-cream”



• Do video foundation models truly understand time?

The problem

“A kid eating ice-cream”

What does this video show?



• Do video foundation models truly understand time?

• Our idea for a “test of time”: ask questions that have temporal relations

The problem

“False”

The baby eats ice-cream before walking down hill? True or False?



• Synthetic benchmark

• Simple ‘true’ or ‘false’ predictions

The test of time



• We pick a suite of seven openly available video-language models

• While excelling at the control task, they all fail at the time-order task

Existing models fail this test of time

Chance



How to instil this sense of time?

• Post-pretraining: instead of training from scratch, we run another round of pre-training



How to instil this sense of time?

• Data: any dense video-captioning dataset!



How to instil this sense of time?

• Base model: We start with a pre-trained model: VideoCLIP

Xu et al, VideoCLIP: Contrastive Pre-training for Zero-shot Video-Text Understanding, EMNLP 2021.

[CLS] Baby eats ice-cream

Video Encoder
(BERT)

Text Encoder
(BERT)

S3D features
Mean

Pooling

Video
representation

Sentence
representation



How to instill this sense of time?



How to instill this sense of time?



Experiments



Experiments



4. Human values
Work in progress with the UvA Data Science Center HAVA-Lab.









What defines human-aligned video-AI, how 
can it be made computable, and what 
determines its societal acceptance?

How can we embed laws, societal values, and 
ethics in video AI’s algorithm lifecycle?

Is there one solution for all, or do we need 
specialized algorithms for each domain?

Cees
Snoek

Pascal
Mettes

Iris
Groen

Heleen
Janssen

Tobias
Blanke

Marie
Lindegaard

Erwin
Berkhout

Stevan
Rudinac

Marlies
Schijven

Paula
Helm



Conclusions

Foundation models are amazing.

But have perceptual difficulty with scarcity, space, time and human values.

Small-capacity adapters and synthetic data generation may help. 

Bonus: both sustainable and responsible.

Thank you



Contact info

Prof. dr. Cees Snoek

https://ivi.fnwi.uva.nl/vislab/

@cgmsnoek {x, bsky.social}

https://ivi.fnwi.uva.nl/vislab/
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