3D Scene Representation Learning

Martin Oswald

Computer Vision Group, University of Amsterdam

Motivation: 3D reconstruction is hard!

Motivation: 3D reconstruction is hard!

Motivation: 3D reconstruction is hard!

Video Generation: Sora

Video Generation: Sora

Vanishing Points!?

Video Generation: Sora

Man looking through telescope

Woman on a surfboard

"Sora is also a Physics Engine!

"Photorealistic closeup video of two pirate ships battling each other as they sail inside a cup of coffee"

[OpenAl, 2024]

"Sora is also a Physics Engine!

Ski jumping man

[OpenAl, 2024]

Scene Representations

[https://arxiv.org/pdf/1803.03352.pdf]

Scene Representations

Implicit Volumetric Representation

- *Voxel grid*: sample a volume containing the surface of interest uniformly
- Label each grid point as lying *inside* or *outside* the surface

- The modeled surface is represented as an *isosurface* (e.g. SDF = 0 or OF = 0.5) of the labeling (implicit) function
- Advantages: simple handling of topological changes, watertight surfaces, no self-occlusions Disadvantages: Large memory requirement, bad scalability to large scenes (cubic growth)

Represent Scenes with TSDFs

Real-time Mapping - KinectFusion

[Newcombe et al, ISMAR 2011]

Scene Representations

Neural Implicit Scene Representations

Neural Implicit Representations

Scene Representations

Scene Representations for 3D Reconstruction

[Metthew Brennan, "Photogrammetry / NeRF / Gaussian Splatting comparison", <u>YouTube</u> 2023]

Structure-from-Motion

Structure-from-Motion (SfM)

Rome dataset

74,394 images

[Johannes L. Schönberger, Jan-Michael Frahm. Structure-from-Motion Revisited. CVPR, 2016; COLMAP]

Neural Radiance Fields (NeRF)

Neural Implicit Representations

Why view-dependent colors?

Neural Radiance Fields (NeRFs)

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Ben Mildenhall* UC Berkeley Pratul P. Srinivasan* UC Berkeley

Matthew Tancik* UC Berkeley Jonathan T. Barron Google Research Ravi Ramamoorthi UC San Diego Ren Ng UC Berkeley

* Denotes Equal Contribution

Neural Radiance Fields (NeRFs)

Neural Radiance Fields (NeRFs)

Gaussian Splatting

Point Splatting

Gaussian Splatting

Gaussian Splatting

Hybrid NeRF / GS: RadSplat

[Niemeyer et al., <u>RadSplat: Radiance Field-Informed Gaussian Splatting for Robust Real-Time Rendering with 900+ FPS</u>, Arxiv 2024]

Neural Implicit Representations

ConvONet [Peng et al., ECCV'20]

NeRF [Mildenhall et al., ECCV'20]

Simultaneous Localization and Mapping

Simultaneous Localization and Mapping

Neural Implicit SLAM: iMAP

[iMAP: Sucar, Liu, Ortiz, Davison, ICCV 2021]

Dense SLAM with a Neural Implicit Scene Represenation

[Zhu, Peng, Larsson, Xu, Bao, Cui, Oswald, Pollefeys, CVPR'22]

RGB-D Sequences

Dense SLAM with a Neural Implicit Scene Represenation

[Zhu, Peng, Larsson, Xu, Bao, Cui, Oswald, Pollefeys, CVPR'22]

Input Depth

Input RGB

NICER-SLAM: RGB-only SLAM

NICER-SLAM: RGB-only SLAM

GΤ

NICE-SLAM

Vox-Fusion

COLMAP

DROID-SLAM

NICER-SLAM

[Zhu, Peng, Larsson, Cui, Oswald, Geiger, Pollefeys, NICER-SLAM, Arxiv 2023]

Gaussian-SLAM: Dense SLAM with Gaussian Splatting

ray

[Yugay, Li, Gevers,

Radience field sampling & feature aggregation

Set of Gaussians encodes geometry and color

Gaussian-SLAM: Dense SLAM with Gaussian Splatting

ESLAM

Gaussian-SLAM

Point-SLAM

MAGiC-SLAM: Multi-Agent Gaussian SLAM

[Sandtröm, Tateno, Oechsle, Niemeyer, Oswald, Tombari, Arxiv'24]

Globally Optimized RGB-only SLAM with 3D Gaussians

Kesults: Rendering on TUM-RGBD

[Sandtröm, Tateno, Oechsle, Niemeyer, Oswald, Tombari, Arxiv'24]

GIORIE-SLAM

MonoGS

Ours

Ground Truth

Kesults: Color & Depth Rendering on Replica

[Sandtröm, Tateno, Oechsle, Niemeyer, Oswald, Tombari, Arxiv'24]

***** Results: Rendering on ScanNet

Method	Metric	0000	0059	0106	0169	0181	0207	Avg.
RGB-D Input								
SplaTaM [24]	PSNR↑	19.33	19.27	17.73	21.97	16.76	19.80	19.14
	SSIM \uparrow	0.66	0.79	0.69	0.78	0.68	0.70	0.72
	LPIPS↓	0.44	0.29	0.38	0.28	0.42	0.34	0.36
MonoGS [38]	PSNR↑	18.70	20.91	19.84	22.16	22.01	18.90	
	SSIM ↑	0.71	0.79	0.81	0.78	0.82	0.75	0.78
	LPIPS↓	0.48	0.32	0.32	0.34	0.42	0.41	0.38
Gaussian- SLAM [74]	PSNR↑	28.54	26.21	26.26	28.60	27.79	28.63	27.67
	SSIM ↑	0.93	0.93	0.93	0.92	0.92	0.91	0.92
	LPIPS↓	0.27	0.21	0.22	0.23	0.28	0.29	0.25
RGB Input								
GO- SLAM [79]	PSNR↑	15.74	13.15	14.58	14.49	15.72	15.37	14.84
	SSIM \uparrow	0.42	0.32	0.46	0.42	0.53	0.39	0.42
	LPIPS↓	0.61	0.60	0.59	0.57	0.62	0.60	0.60
MonoGS [38]	PSNR↑	16.91	19.15	18.57	20.21	19.51	18.37	18.79
	SSIM ↑	0.62	0.69	0.74	0.74	0.75	0.70	0.71
	LPIPS↓	0.70	0.51	0.55	0.54	0.63	0.58	0.59
GIORIE- SLAM* [75]	PSNR↑	23.42	20.66	20.41	25.23	21.28	23.68	22.45
	SSIM ↑	0.87	0.87	0.83	0.84	0.91	0.76	0.85
	LPIPS↓	0.26	0.31	0.31	0.21	0.44	0.29	0.30
Splat-SLAM (Ours)	PSNR↑	28.68	27.69	27.70	31.14	31.15	30.49	29.48
	SSIM ↑	0.83	0.87	0.86	0.87	0.84	0.84	0.85
	LPIPS	0.19	0.15	0.18	0.15	0.23	0.19	0.18

***** Results: Reconstruction on Replica

Metrics	NeRF- SLAM [62]	DIM- SLAM [28]	GO- SLAM [79]	NICER- SLAM [81]	HI- SLAM [78]	MoD- SLAM* [80]	GIORIE- SLAM* [75]	Mono- GS[38]	Q-SLAM * [46]	Ours
Render Depth L1↓	4.49	-	-	-	-	-	-	27.24	2.76	2.41
Accuracy ↓	-	4.03	3.81	3.65	3.62	2.48	2.96	30.61	-	2.43
Completion \downarrow	-	4.20	4.79	4.16	4.59	-	3.95	12.19	-	3.64
Comp. Rat. ↑	-	79.60	78.00	79.37	80.60	-	83.72	40.53	-	84.69

Deblur Gaussian SLAM

Blurry Input

Reconstruction

Deblur Gaussian SLAM

Language and 3D

Open-vocabulary Online SLAM

Auto-Vocabulary Segmentation

[Wie, Ülger, Karimi Gevers, Oswald, Arxiv'23]

3D Auto-Vocabulary Segmentation for LiDAR

58

Conclusion and Take-away

- 3D / 4D computer vision algorithms train faster and require less training data (vs. 2D)
- 3D modeling, but 2D supervision
- Scene understanding requires memory
- Photographic and deformable memory improves accuracy & enables new applications
- Self-supervised learning via re-rendering error minimization
- Scene representation is important (local updates, deformable, catastrophic forgetting)
- SLAM can be a useful stepping stone for continual scene understanding

Future Directions

- Beyond semantics: multi-modal output open-vocabulary & foundation models
- 3D-Language maps and spatial language-based reasoning
- Learning and controlling forgetting (keeping track of task-relevant changes)
- Collaborative / distributed asynchronous learning with multiple agents
- Physics-based scene representations (metric units, weights, gravity, etc.)
- 3D generative multi-modal models
- Dynamic scenes and temporal representations

