



# **Computer Vision by Learning**

Cees Snoek, University of Amsterdam

Efstratios Gavves, University of Amsterdam

With an invited tutorial by: Serge Belongie, University of Copenhagen

http://computervisionbylearning.info

### Program

MondayFundamentalsTuesdayComputer vision by learningWednesdayMachine learning for computer visionThursdayComputer video by learningFridayInvited tutorial by Serge Belongie



Serge Belongie

#### **Guest speakers**





Subhransu Maji Martin Oswald

Id Erik Bekkers



Yuki Asano



Hazel Doughty

### Reminder: Where and When

#### Monday 9<sup>th</sup> of May to Thursday 12<sup>th</sup> of May

| Lectures | 09:30-12:15 | CASA – theater room |
|----------|-------------|---------------------|
| Lunch    | 12:15-13:30 | included            |
| Lab      | 13:30-17:00 | CASA – 3 lab rooms  |

#### Thursday 12<sup>th</sup> of May

Borrel 17:00-18:00 CASA

#### Friday 13<sup>th</sup> of May

Invited tutorial09:30-12:15Startup Village – Venture studioClosing12:15-12:30

### Reminder: Map



### Your feedback on the course

| •••                                     | ~ < >                                     |                        | 0       |        |        | 🔒 tude | elft.fra1.qualt  | trics.com |            | (Ala       | 5          |            |  |  | Û | + |   |
|-----------------------------------------|-------------------------------------------|------------------------|---------|--------|--------|--------|------------------|-----------|------------|------------|------------|------------|--|--|---|---|---|
|                                         | Please grade the moderators of the course |                        |         |        |        |        |                  |           |            |            |            |            |  |  |   |   |   |
|                                         |                                           | Extremely dissatisfied |         |        |        |        |                  |           |            | Extr       | emely s    | atisfied   |  |  |   |   |   |
|                                         |                                           | 0                      | 1       | 2      | 3      | 4      | 5                | 6         | 7          | 8          | 9          | 10         |  |  |   |   |   |
|                                         |                                           | 0                      | 0       | 0      | 0      | 0      | 0                | 0         | $\bigcirc$ | 0          | $\bigcirc$ | 0          |  |  |   |   |   |
|                                         |                                           | Please                 | e grade | e; the | struct | ure of | f the c          | ourse     |            |            |            |            |  |  |   |   |   |
|                                         |                                           |                        |         |        |        |        |                  |           |            |            |            |            |  |  |   |   |   |
|                                         |                                           | Extremely dissatisfied |         |        |        |        | Extremely satisf |           |            |            |            | atisfied   |  |  |   |   |   |
|                                         |                                           | 0                      | 1       | 2      | 3      | 4      | 5                | 6         | 7          | 8          | 9          | 10         |  |  |   |   |   |
|                                         |                                           | 0                      | 0       | 0      | 0      | 0      | 0                | 0         | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |   |   |   |
|                                         |                                           |                        |         |        |        |        |                  |           |            |            |            |            |  |  |   |   |   |
| Please grade; the program of the course |                                           |                        |         |        |        |        |                  |           |            |            |            |            |  |  |   |   |   |
|                                         |                                           | Extremely dissatisfied |         |        |        |        |                  |           |            | Extr       | emely s    | atisfied   |  |  |   |   |   |
|                                         |                                           | 0                      | 1       | 2      | 3      | 4      | 5                | 6         | 7          | 8          | 9          | 10         |  |  |   |   | - |
|                                         |                                           | 0                      | 0       | 0      | 0      | 0      | 0                | 0         | 0          | 0          | 0          | 0          |  |  |   |   |   |
|                                         |                                           |                        |         |        |        |        |                  |           |            |            |            |            |  |  |   |   |   |
|                                         |                                           |                        |         |        |        |        |                  |           |            |            |            |            |  |  |   |   |   |
|                                         |                                           |                        |         |        |        |        |                  |           |            |            |            |            |  |  |   |   |   |

# Beyond spatial classification

# 1 ice\_skating:0.98 2 speed\_skating:0.01

### Motivating question for this tutorial

#### Is video more than the sum of its individual images?









Other\_5005

### Overview

- 1. Spatial then temporal, person detection, linking, attention
- 2. Spatial and temporal, tubelets, convnet, transformer
- 3. Spatial and temporal and sound, repetition count, domain adaptation.

# 1. Spatial then temporal

Gkioxari & Malik, CVPR 2015

### Finding action tubes



**Detection per video frame** 

Link detections by dynamic programming



Escorcia *et al.,* CVIU 2020

### Siamese linking of spatial detectors





Li et al., CVIU 2018

### VideoLSTM convolves, attends and flows



#### Enable action localization from action class labels only

#### Li et al., CVIU 2018

### Temporal smoothing by linear regression



# 2. Spatial and temporal

Jain *et al.,* CVPR 2014 / IJCV 2017

### Tubelets: unsupervised activity proposals



Ground truth

Super-voxel segmentation

Proposals from merged voxels

### Tubelets: unsupervised activity proposals

Analyze **space and time jointly** to obtain action proposals

Action-class agnostic, covers variable aspect ratios and temporal lengths

Relies on **supervoxels** 

High recall with few proposals



#### Tube Convolutional Neural Network



Hou et al. ICCV 2017

#### **Predicting Action Tubes**



Singh et al., ECCVw 2018

#### Action Tubelet Detector



#### Kalogeiton *et al*, ICCV, 2017

#### Two-in-One Stream



#### Zhao & Snoek, CVPR 2019

### What about transformers?



### TubeR: Tubelet Transformer for Video Action Detection



Joint work with Yanyi Zhang, Xinyu Li, Hao Chen, Shuai Bing, Mingze Xu, Chunhui Liu, Kaustav Kundu, Yuanjun Xiong, Davide Modolo, Ivan Marsic, Cees G M Snoek, Joseph Tighe, while at Amazon internship.

To appear in CVPR 2022 (oral).

### TubeR: Tubelet Transformer for Action Detection



Allows each 2D+t position to attend to all other 2D+t positions in a video clip, which is essential for modeling action relations.

### Advantages of transformer





The self-attention mechanism facilitates the exchange of boxes between frames, which helps to form action tubelets

### Big picture

Three contributions: Tubelet query, tubelet attention layer and task-specific heads





Each tubelet query consists of T box queries.

Box queries share the identity feature  $C'_s$  for the visual similarity and have independent features  $C'_t$  to capture changes over time.

Without the identity feature, a tubelet is not automatically formed.



### iii. Task-specific heads

#### **Context-aware classification**

**Short-term**: query action-specific feature with short-term (global) context **Long-term**: buffer containing the backbone feature extracted from a long clip

#### **Action switch regression**

FC layer to decide whether a box prediction depicts an action Allows to generate action tubelets with a more precise temporal extent.

Without switch



Stand, Watch Stand, John Stand, Watch Watch Stand, Watch Stand, Watch

With switch

#### Input frames



### TubeR-behavior

### Each tubelet covers a separated action instance

### Qualitative results



#### Shot changes

#### Occlusions

#### Scale changes



Jiaojiao Zhao et al., CVPR 2022

# 3. Spatial and temporal and sound

### Repetitive Activity Counting by Sight and Sound



Yunhua Zhang

University of Amsterdam



Ling Shao Inception Institute of AI



Cees Snoek University of Amsterdam

In CVPR 2021.



### Repetitive motion

#### Sports



Urban



#### Music



#### Natural environments


Cutler & Davis, PAMI 2000 Pogalin et al. CVPR 2008

# Stationary world

Represent video as one-dimensional fixed-period Fourier signal that preserves repetitive motion structure

Had to assume static and stationary video, inapt for real world



w/ Tom Runia, et al. CVPR 2018 & IJCV 2019

### Non-stationary world

#### Wavelet transform of optical flow features



### Dataset world



Dwibedi et al., introduce Countix at CVPR 2020 Zhang et al. introduce UCFRep at CVPR 2020

#### https://github.com/xiaobai1217/Awesome-Video-Datasets



# Real world challenges unseen during training

### Contributions

**Video repetition estimation** from a new perspective based on not only the sight but also the sound signal

**Audiovisual model** with a sight and sound stream, each stream facilitates each modality to predict the number of repetitions

**Two** sight and sound datasets for video repetition estimation

## Model basics



**Sight stream:** S3D net predicting counting result per input clip and repetition class

**Sound stream:** Resnet-18 predicting counting result per sound spectrogram and repetition class

**Temporal stride:** selects best stride per video for the sight stream based on visual and audio features

Reliability: decides what prediction to use

### A more detailed view



# Repurpose and reorganize Countix dataset

#### **Countix-AV**

1,863 videos covering repetitive activity categories with clear sound and without background music, with 987, 311 and 565 for train, val and test.

#### **Extreme Countix-AV**

156 videos from Countix-AV and another 58 videos from the VGGSound dataset in which the sight conditions are too poor for counting, for test only,

https://github.com/xiaobai1217/Awesome-Video-Datasets



# Benefit of model components

| Model components           | MAE↓  | Mean Absolute Error                                 |
|----------------------------|-------|-----------------------------------------------------|
| Sight stream               | 0.331 | $1 \sum_{i=1}^{N}  \hat{c}_i - l_i $                |
| Sound stream               | 0.375 | $\frac{1}{N}\sum_{i=1}^{N}\frac{l^{i}l^{i}}{l_{i}}$ |
| Sight with temporal stride | 0.314 |                                                     |
| Averaging predictions      | 0.300 | $l_i$ - groundtruth                                 |
| Full sight and sound model | 0.291 | $\widehat{c_i}$ - model prediction                  |

#### All modules matter, reliability estimation is preferred over simple averaging

# Comparison with others

#### Sight datasets

|                            | UCFRep | Countix |
|----------------------------|--------|---------|
|                            | MAE↓   | MAE↓    |
| Baseline by Dwibedi et al. | 0.474  | 0.525   |
| Dwibedi et al. CVPR20      | -      | 0.364   |
| Zhang et al. CVPR20        | 0.147  | -       |
| Levy and Wolf ICCV15       | 0.286  | -       |
| Ours: sight only           | 0.143  | 0.314   |
| Ours: sound only           | -      | 0.793   |
| Ours: sight & sound        | -      | 0.307   |

#### Sight-only model already good

# Comparison with others

|                            | Sight datasets |       | Sight & Sound datasets |                    |
|----------------------------|----------------|-------|------------------------|--------------------|
|                            | UCFRep Countix |       | Countix-AV             | Extreme Countix-AV |
|                            | MAE↓           | MAE↓  | MAE↓                   | MAE↓               |
| Baseline by Dwibedi et al. | 0.474          | 0.525 | 0.503                  | 0.620              |
| Dwibedi et al. CVPR20      | -              | 0.364 | -                      | -                  |
| Zhang et al. CVPR20        | 0.147          | -     | -                      | -                  |
| Levy and Wolf ICCV15       | 0.286          | -     | -                      | -                  |
| Ours: sight only           | 0.143          | 0.314 | 0.331                  | 0.392              |
| Ours: sound only           | -              | 0.793 | 0.375                  | 0.351              |
| Ours: sight & sound        | -              | 0.307 | 0.291                  | 0.329              |

Sight-only model already good, adding sound further reduces counting error

# Real world video challenges

| Real world challenge     | Sight | Sound | Sight & Sound |
|--------------------------|-------|-------|---------------|
| Camera viewpoint changes | 0.384 | 0.376 | 0.331         |
| Cluttered background     | 0.342 | 0.337 | 0.307         |
| Low illumination         | 0.325 | 0.269 | 0.310         |
| Fast motion              | 0.528 | 0.311 | 0.383         |
| Disappearaing activity   | 0.413 | 0.373 | 0.339         |
| Scale variation          | 0.332 | 0.386 | 0.308         |
| Low resolution           | 0.348 | 0.303 | 0.294         |
| Overall                  | 0.392 | 0.351 | 0.329         |

Sound less sensitive than sight, combination always outperforms sight only



# Low resolution



Sound can play a vital role, especially under harsh vision conditions

#### Audio-Adaptive Activity Recognition Across Video Domains



Yunhua Zhang University of Amsterdam



Hazel Doughty University of Amsterdam

Ling Shao Inception Institute of AI



Cees Snoek University of Amsterdam

To appear in CVPR 2022.



# Activity recognition under domain shift

#### **Opening** activity



#### Eating activity



#### **Opening** activity









Camera viewpoint shift

Actor shift

Scenery shift

# Proposed solution

We deal with the vision distribution shift with the aid of **activity sounds**.



## Audio-balanced learning

**Motivation**: videos from **different domains** often have **different label distributions**, not only in terms of activity classes but also their interactions with objects or the environment.

**Solution:** learn each class and each type of interaction equally



## Audio-balanced learning

For source domain data, we use audio to **cluster** the samples inside each class.

Each cluster is treated as one type of interaction



## Absent-activity learning

**Observation**: Most activities are silent — Audio predictions are unreliable

**Solution**: activities with the lowest audio-based probablities

**Example**: silent environment  $\rightarrow$  "playing piano" X

Forcing the model to predict low probabilities towards these absent activities.

# Absent-activity learning



EPIC-Kitchens (scenery shift) Single-label classification

#### Groundtruth activity:

pour

Absent activities predicted by audio: wash close open

## An audio-adaptive visual encoder

#### Supervised by audio-balanced learning and absent-activity learning



# Activity sounds provide out-of-sight information

3rd person view



We can see a person (domain-specific visual feature)



No person can be observed But the sound can be heard

Remaining problem remove domain-specific visual features

## Recap: vision transformer

Follows standard transformer encoder, adds learnable classification token



### Audio-infused transformer

**Domain embedding:** remove domain-specific visual features

Audio-adaptive class token: incorporate the activity information from sound

Activity sound feature vectors: chosen by the audio features, which provides regularization for model learning.



|                                 | <b>Scenery-shift 个</b><br>(EPIC-Kitches, top-1) | <b>Viewpoint-shift↑</b><br>(CharadesEgo, mAP) |
|---------------------------------|-------------------------------------------------|-----------------------------------------------|
| Stage 1: Audio-adaptive encoder |                                                 |                                               |
| Visual encoder (SlowFast)       | 48.0                                            | 23.1                                          |
| +Audio-based attention          | 51.2                                            | 23.5                                          |



|                                 | <b>Scenery-shift 个</b><br>(EPIC-Kitches, top-1) | <b>Viewpoint-shift↑</b><br>(CharadesEgo, mAP) |
|---------------------------------|-------------------------------------------------|-----------------------------------------------|
| Stage 1: Audio-adaptive encoder |                                                 |                                               |
| Visual encoder (SlowFast)       | 48.0                                            | 23.1                                          |
| +Audio-based attention          | 51.2                                            | 23.5                                          |

|                                 | Scenery-shift ↑<br>(EPIC-Kitches, top-1) | <b>Viewpoint-shift个</b><br>(CharadesEgo, mAP) |
|---------------------------------|------------------------------------------|-----------------------------------------------|
| Stage 1: Audio-adaptive encoder |                                          |                                               |
| Visual encoder (SlowFast)       | 48.0                                     | 23.1                                          |
| +Audio-based attention          | 51.2                                     | 23.5                                          |
| +Absent-activity learning       | 53.7                                     | 24.4                                          |
| +Audio-balanced learning        | 55.7                                     | 25.0                                          |

|                                    | <b>Scenery-shift 个</b><br>(EPIC-Kitches, top-1) | <b>Viewpoint-shift个</b><br>(CharadesEgo, mAP) |
|------------------------------------|-------------------------------------------------|-----------------------------------------------|
| Stage 1: Audio-adaptive encoder    |                                                 |                                               |
| Visual encoder (SlowFast)          | 48.0                                            | 23.1                                          |
| +Audio-based attention             | 51.2                                            | 23.5                                          |
| +Absent-activity learning          | 53.7                                            | 24.4                                          |
| +Audio-balanced learning           | 55.7                                            | 25.0                                          |
| Stage 2: Audio-infused transformer |                                                 |                                               |
| +Vanilla multi-modal transformer   | 56.1                                            | 25.0                                          |
| +Domain embedding                  | 57.2                                            | 25.4                                          |
| +Audio-adaptive class token        | 59.2                                            | 26.3                                          |

# Scenery-shift on EPIC-Kitchens

|                  |              | RGB          | Flow         | Audio        | Mean |
|------------------|--------------|--------------|--------------|--------------|------|
| I3D Architecture |              |              |              |              |      |
| Sahoo et al.     | NeurIPS 2021 | $\checkmark$ |              |              | 43.2 |
| Munro & Damen    | CVPR 2020    | $\checkmark$ | $\checkmark$ |              | 50.3 |
| Song et al.      | CVPR 2021    | $\checkmark$ | $\checkmark$ |              | 51.2 |
| Kim et al.       | ICCV 2021    | $\checkmark$ | $\checkmark$ |              | 51.0 |
| This paper       |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | 54.1 |

# Scenery-shift on EPIC-Kitchens

|                       |              | RGB          | Flow         | Audio        | Mean |
|-----------------------|--------------|--------------|--------------|--------------|------|
| I3D Architecture      |              |              |              |              |      |
| Sahoo et al.          | NeurIPS 2021 | $\checkmark$ |              |              | 43.2 |
| Munro & Damen         | CVPR 2020    | $\checkmark$ | $\checkmark$ |              | 50.3 |
| Song et al.           | CVPR 2021    | $\checkmark$ | $\checkmark$ |              | 51.2 |
| Kim et al.            | ICCV 2021    | $\checkmark$ | $\checkmark$ |              | 51.0 |
| This paper            |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | 54.1 |
| SlowFast Architecture |              |              |              |              |      |
| This paper            |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | 61.0 |

## Viewpoint-shift on CharadesEgo

#### semi-supervised domain adaptation



## Viewpoint-shift on CharadesEgo

#### semi-supervised domain adaptation



### Actor-shift: success case

#### Source domain







#### Target domain



Encoder + recognizer Groundtruth: *sleeping* Prediction: *sleeping* Confidence: 0.76

### Actor-shift: success case





#### Target domain



Encoder + recognizer Groundtruth: opening door Prediction: opening door Confidence: 0.85

### Actor-shift: failure case

#### Source domain







#### Target domain



Encoder + recognizer Groundtruth: *drinking* Prediction: *eating* Confidence: 0.35
### Actor-shift: failure case

#### Source domain





#### Target domain



Encoder + recognizer Groundtruth: running Prediction: swimming Confidence: 0.48

## Conclusions

Video understanding treated by many as **glorified image** recognition problem.

We presented **holistic video** perspective based on **spatiotemporal tubelets**.

Showed invariant properties of **sound for hard activity recognition** conditions.

# Thank you

www.ceessnoek.info