Understanding Actions in Video

Hazel Doughty

Action Recognition

Deep Learning for Action Recognition

Karen Simonyan and Andrew Zisserman. "Two-stream convolutional networks for action recognition in videos." *NeurIPS* (2014).

Deep Learning for Action Recognition

Limin Wang et al. "Temporal segment networks: Towards good practices for deep action recognition." ECCV, 2016

Fine-Grained Action Recognition

What is happening?

Coarse-grained: cooking

Fine-grained: cutting bell pepper

Fine-Grained Action Recognition

EPIC Kitchens, Damen et al. ECCV 2020

FineGym, Shao et al. CVPR 2020

Deep Learning for Action Recognition

Ji Lin, Chuang Gan, and Song Han. "Tsm: Temporal shift module for efficient video understanding." CVPR. 2019.

Deep Learning for Action Recognition

Christoph Feichtenhofer, et al. "Slowfast networks for video recognition." *Proceedings of the IEEE/CVF international conference on computer vision*. 2019.

Issue with Supervision

Action Modifiers: Learning from Adverbs in Instructional Videos CVPR 2020

Dima Damen University of Bristol

More info: https://hazeldoughty.github.io/Papers/ActionModifiers/

Hazel Doughty University of Bristol

Ivan Laptev INRIA École Normale Supérieure

Walterio Mayol-Cuevas University of Bristol Amazon

Beyond 'What' is Happening

worse slowly messily peel onion put onion peel in bin slice onion

better quickly neatly

Adverbs

... if you **turn** the bowl upside down **slowly** they won't come out ...

... mix it well until it is **completely dissolved** ...

... you want to make sure you **fill** it up **partially** ...

... you want to **dice** it **finely**...

Adverbs - Dataset

Video: https://www.youtube.com/watch?v=rajo0x7WF-c&t=100s

... we're going to mix these up real quick...

... get under there then turn real quick...

...wash, roll up and spin it to **completely** dip it...

Conclusions

- The proposed method can learn how adverbs compose with different actions
- We can successfully learn adverb representations with weak supervision
- Open challenges:
 - Representing more adverbs
 - Spatial disambiguation from weak supervision
 - Utilizing adverbs for other tasks

How Do You Do It? Fine-Grained Action Understanding with Pseudo-Adverbs CVPR 2022

Hazel Doughty

Cees Snoek

University of Amsterdam

More info: https://hazeldoughty.github.io/Papers/PseudoAdverbs/

Idea

How is the action being performed? with adverb labels slowly 🗸 swim slowly without adverb labels slowly? firmly? vertically? fold pseudo-labelling

Adverb Datasets

Action-Only Labels

Action-Only Labels

Action-Only Labels

Semi Supervised Learning of Adverbs

Semi Supervised Learning of Adverbs

Results – Unseen Compositions

Method	Accuracy
Supervised only Ours	52.2 56.1
Training with full labels	65.1

Table 4. **Unseen compositions** in VATEX Adverbs. Our method improves generalization to unseen action-adverb compositions.

slowly

Results – New Domains

fold gently

fold gently

swim slowly

swim slowly

Method	MSR-VTT Adverbs	ActivityNet Adverbs
Source only	62.9	67.2
Pseudo-Label	63.9	66.4
Ours	65.0	66.6
Source + Target	67.5	71.6
Target only	70.5	71.8

Table 5. Transfer to **unseen domains** from VATEX-Adverbs. Our method aids generalization to similar domains (MSR-VTT Adverbs), but struggles with larger shifts (ActivityNet Adverbs).

Video: https://hazeldoughty.github.io/Papers/PseudoAdverbs/

Adverb Pseudo-Labeling Examples

Conclusions

- Using multi-adverb pseudo-labelling allows us to use action labelled videos
- We can successfully learn adverbs in a long-tailed distribution
- Open challenges:
 - Recognizing unseen action-adverb combinations
 - Infeasible combinations
 - Generalization from few contexts
 - Utilizing adverbs for other tasks

How SEVERE is Benchmark Sensitivity in Video Self-Supervised Learning?

Fida Mohammad Thoker

Hazel Doughty

ghty

Piyush Bagad

Cees Snoek

University of Amsterdam

Current Evaluation

Kinetics

FLIPPING PANCAKE

UCF-101

HMDB

Current Evaluation

JOGGING

Something-Something

NTU

Factors We Investigate

Factors We Investigate

Downstream Datasets

Something Something

EPIC-Kitchens-100

Charades

AVA

Pre-training	Finetuning				
The truning	UCF101	NTU60	Gym99	SSv2	EK 100
None	75.4	92.9	89.4	56.8	25.7
MoCo	83.5	93.4	90.6	57.0	26.4
SeLaVi	84.9	92.8	88.9	56.4	33.8
VideoMoCo	85.8	94.1	90.5	58.8	43.6
Pretext-Contrast	86.6	93.9	90.3	57.0	34.3
RSPNet	88.5	93.9	91.3	59.4	42.7
AVID-CMA	89.3	94.0	90.6	53.8	29.9
CtP	89.8	94.3	92.2	60.2	42.8
TCLR	90.8	94.1	91.5	60.0	36.2
GDT	91.1	93.9	90.4	57.8	37.3
Supervised	94.1	93.9	91.8	61.0	47.7

Pre-training	Finetuning				
The training	UCF101	NTU60	Gym99	SSv2	EK 100
None	75.4	92.9	89.4	56.8	25.7
MoCo	83.5	93.4	90.6	57.0	26.4
SeLaVi	84.9	92.8	88.9	56.4	33.8
VideoMoCo	85.8	94.1	90.5	58.8	43.6
Pretext-Contrast	86.6	93.9	90.3	57.0	34.3
RSPNet	88.5	93.9	91.3	59.4	42.7
AVID-CMA	89.3	94.0	90.6	53.8	29.9
CtP	89.8	94.3	92.2	60.2	42.8
TCLR	90.8	94.1	91.5	60.0	36.2
GDT	91.1	93.9	90.4	57.8	37.3
Supervised	94.1	93.9	91.8	61.0	47.7

Pre-training	Finetuning					
The training	UCF101	NTU60	Gym99	SSv2	EK 100	
None	75.4	92.9	89.4	56.8	25.7	
MoCo	83.5	93.4	90.6	57.0	26.4	
SeLaVi	84.9	92.8	88.9	56.4	33.8	
VideoMoCo	85.8	94.1	90.5	58.8	43.6	
Pretext-Contrast	86.6	93.9	90.3	57.0	34.3	
RSPNet	88.5	93.9	91.3	59.4	42.7	
AVID-CMA	89.3	94.0	90.6	53.8	29.9	
CtP	89.8	94.3	92.2	60.2	42.8	
TCLR	90.8	94.1	91.5	60.0	36.2	
GDT	91.1	93.9	90.4	57.8	37.3	
Supervised	94.1	93.9	91.8	61.0	47.7	

Pre-training	Finetuning					
The training	UCF101	NTU60	Gym99	SSv2	EK 100	
None	75.4	92.9	89.4	56.8	25.7	
MoCo	83.5	93.4	90.6	57.0	26.4	
SeLaVi	84.9	92.8	88.9	56.4	33.8	
VideoMoCo	85.8	94.1	90.5	58.8	43.6	
Pretext-Contrast	86.6	93.9	90.3	57.0	34.3	
RSPNet	88.5	93.9	91.3	59.4	42.7	
AVID-CMA	89.3	94.0	90.6	53.8	29.9	
CtP	89.8	94.3	92.2	60.2	42.8	
TCLR	90.8	94.1	91.5	60.0	36.2	
GDT	91.1	93.9	90.4	57.8	37.3	
Supervised	94.1	93.9	91.8	61.0	47.7	

Pre-training	Finetuning				
The training	UCF101	NTU60	Gym99	SSv2	EK 100
None	75.4	92.9	89.4	56.8	25.7
MoCo	83.5	93.4	90.6	57.0	26.4
SeLaVi	84.9	92.8	88.9	56.4	33.8
VideoMoCo	85.8	94.1	90.5	58.8	43.6
Pretext-Contrast	86.6	93.9	90.3	57.0	34.3
RSPNet	88.5	93.9	91.3	59.4	42.7
AVID-CMA	89.3	94.0	90.6	53.8	29.9
CtP	89.8	94.3	92.2	60.2	42.8
TCLR	90.8	94.1	91.5	60.0	36.2
GDT	91.1	93.9	90.4	57.8	37.3
Supervised	94.1	93.9	91.8	61.0	47.7

Pre-training	Finetuning				
The training	UCF101	NTU60	Gym99	SSv2	EK 100
None	75.4	92.9	89.4	56.8	25.7
MoCo	83.5	93.4	90.6	57.0	26.4
SeLaVi	84.9	92.8	88.9	56.4	33.8
VideoMoCo	85.8	94.1	90.5	58.8	43.6
Pretext-Contrast	86.6	93 9	90.3	57.0	34.3
RSPNet	88.5	93.9	91.3	59.4	42.7
AVID-CMA	89.3	94.0	90.6	53.8	29.9
CtP	89.8	94.3	92.2	60.2	42.8
TCLR	90.8	94.1	91.5	60.0	36.2
GDT	91.1	93.9	90.4	57.8	37.3
Supervised	94.1	93.9	91.8	61.0	47.7

Pre-training	Finetuning				
The training	UCF101	NTU60	Gym99	SSv2	EK 100
None	75.4	92.9	89.4	56.8	25.7
MoCo	83.5	93.4	90.6	57.0	26.4
SeLaVi	84.9	92.8	88.9	56.4	33.8
VideoMoCo	85.8	94.1	90.5	58.8	43.6
Pretext-Contrast	86.6	93.9	90.3	57.0	34.3
RSPNet	88.5	93.9	91.3	59.4	42.7
AVID-CMA	89.3	94.0	90.6	53.8	29.9
CtP	89.8	94.3	92.2	60.2	42.8
TCLR	90.8	94.1	91.5	60.0	36.2
GDT	91 1	93 9	90.4	57.8	37.3
Supervised	94.1	93.9	91.8	61.0	47.7

Factors We Investigate

Gym99					
Pre-training	Across Events	Within	n Event	With	in Set
	All	Vault	Floor	FX-S1	UB-S1
None	84.4	24.7	75.9	45.0	84.0
SeLaVi	84.8	25.4	76.0	50.2	81.5
Pretext-contrast	85.7	28.5	81.4	65.8	86.2
AVID-CMA	85.8	30.4	82.7	67.2	88.4
MoCo	86.2	33.2	83.3	65.1	85.0
VideoMoCo	86.4	28.4	79.5	60.4	82.1
GDT	86.5	36.9	83.6	65.7	81.6
RSPNet	87.6	33.4	82.7	63.5	85.1
TCLR	88.0	29.8	84.3	61.0	85.3
CtP	88.3	26.8	86.2	79.7	88.4
Supervised	88.0	37.7	86.1	81.0	86.9

	Gym99				
Pre-training	Across Events	Within	Event	With	in Set
	All	Vault	Floor	FX-S1	UB-S1
None	84.4	24.7	75.9	45.0	84.0
SeLaVi	84.8	25.4	76.0	50.2	81.5
Pretext-contrast	85.7	28.5	81.4	65.8	86.2
AVID-CMA	85.8	30.4	82.7	67.2	88.4
MoCo	86.2	33.2	83.3	65.1	85.0
VideoMoCo	86.4	28.4	79.5	60.4	82.1
GDT	86.5	36.9	83.6	65.7	81.6
RSPNet	87.6	33.4	82.7	63.5	85.1
TCLR	88.0	29.8	84.3	61.0	85.3
CtP	88.3	26.8	86.2	79.7	88.4
Supervised	88.0	37.7	86.1	81.0	86.9

	Gym99				
Pre-training	Across Events	Withir	Within Event		in Set
	All	Vault	Floor	FX-S1	UB-S1
None	84.4	24.7	75.9	45.0	84.0
SeLaVi	84.8	25.4	76.0	50.2	81.5
Pretext-contrast	85.7	28.5	81.4	65.8	86.2
AVID-CMA	85.8	30.4	82.7	67.2	88.4
MoCo	86.2	33.2	83.3	65.1	85.0
VideoMoCo	86.4	28.4	79.5	60.4	82.1
GDT	86.5	36.9	83.6	65.7	81.6
RSPNet	87.6	33.4	82.7	63.5	85.1
TCLR	88.0	29.8	84.3	61.0	85.3
CtP	88.3	20.8	80.2	79.7	88.4
Supervised	88.0	37.7	86.1	81.0	86.9

	Gym99						
Pre-training	Across Events	Within Event		Within Set			
	All	Vault	Floor	FX-S1	UB-S1		
None	84.4	24.7	75.9	45.0	84.0		
SeLaVi	84.8	25.4	76.0	50.2	81.5		
Pretext-contrast	85.7	28.5	81.4	65.8	86.2		
AVID-CMA	85.8	30.4	82.7	67.2	88.4		
MoCo	86.2	33.2	83.3	65.1	85.0		
VideoMoCo	86.4	<u> 28 4</u>	79.5	60.4	82.1		
GDT	86.5	36.9	83.6	65.7	81.6		
KSPNet	87.0	33.4	82.7	63.5	85.1		
TCLR	88.0	29.8	84.3	61.0	85.3		
CtP	88.3	26.8	86.2	79.7	88.4		
Supervised	88.0	37.7	86.1	81.0	86.9		

	Gym99						
Pre-training	Across Events	Within Event		Within Set			
	All	Vault	Floor	FX-S1	UB-S1		
None	84.4	24.7	75.9	45.0	84.0		
SeLaVi	84.8	25.4	76.0	50.2	81.5		
Pretext-contrast	85.7	28.5	81.4	65.8	86.2		
AVID-CMA	85.8	30.4	82.7	67.2	88.4		
MoCo	86.2	33.2	83.3	65.1	85.0		
VideoMoCo	86.4	28.4	79.5	60.4	82.1		
GDT	86.5	36.9	83.6	65.7	81.6		
RSPNet	87.6	33.4	82.7	63.5	85.1		
TCLR	88.0	29.8	84.3	61.0	85.3		
CtP	88.3	26.8	86.2	79.7	88.4		
Supervised	88.0	37.7	86.1	81.0	86.9		

Overall Observations

- Different methods are better in different downstream settings
- Supervised pre-training dominates
- Contrasting parts of a video clip increases generalizability
- Too many augmentations can harm generalizability to fine-grained settings
- CtP generalizes well and doesn't use contrastive learning

0.8

0.6

0.4

0.2

On Semantic Similarity in Video Retrieval CVPR 2021

Michael Wray

Hazel Doughty

Dima Damen

University of Bristol

More info: https://mwray.github.io/SSVR/

Video Retrieval

Which of these captions correspond to the following video?

A band is performing for the crowd

A man is peeling fruit.

A girl is sitting in a chair

Add prawns to the pan and mix

Video: https://www.youtube.com/watch?v=A07zUbxMn60

Which video is ground truth for this caption:

"A demonstration in origami"

Retrieval Assumption

Current methods make the following assumption

"There exists only one corresponding caption for a given video and vice versa"

YouCook2

Put fork and spoon in drying rack Put spoons in drying rack Put spoon in drying rack Put bowl in drying rack Put plate in drying rack

EPIC-KITCHENS

MSR-VTT

A band is performing for the crowd

- A band is performing on a brightly lit stage
- A band is playing a show
- A band and singers perform
- 3 guys singing and playing instruments on a stage

Semantic Similarity

Two main goals for semantic similarity:

Move from a one-to-one relationship between videos and captions to manyto-many.

Allow for differing levels of similarity

Proxy Measures

Want to relate two items semantically.

Assume that a caption sufficiently describes a video.

Define a proxy function that relates captions

$$S(x_i, y_j) = S'(y_i, y_j)$$

Example Proxy Measures

We introduce three other metrics based on:

- Parts of Speech
- Synsets
- METEOR

	J.	
	BoW	1.00
mix the ingredients in the pan together	1.0	
stir all of the ingredients in the pan	0.5	- 0.75
stir the food in the pan	0.2	- 0.50
add the chicken to the pan and mix	0.4	
fry the chicken in the pan	0.2	- 0.25
crush some garlic	0.0	- 0.00

Problems with Instance Retrieval

Peel and cut up the potato

Evaluating Semantic Retrieval

We use normalised Discounted Cumulative Gain to evaluate multiple items with differing relevance.

WARDEN NASH

Query Video

Evaluating with Semantic Similarity

Whilst models outperform the MLP baseline (MME) for Instance Video Retrieval, this isn't the case when Semantic Similarity is used.

MoEE: Antoine Miech, Ivan Laptev, and Josef Sivic. Learning a text-video embedding from incomplete and heterogeneous data. CoRR, abs/1804.02516, 2018 CE: Yang Liu, Samuel Albanie, Arsha Nagrani, and Andrew Zisserman. Use what you have: Video retrieval using representations from collaborative experts. In BMVC, 2019 JPoSE: Michael Wray, Diane Larlus, Gabriela Csurka, and Dima Damen. Fine-grained action retrieval through multiple partsof-speech embeddings. In ICCV, 2019

Training with Semantic Similarity

Results on YouCook2 with models trained for 10 thresholds. Training with any proxy outperforms using instance training.

Training with Semantic Similarity II

Results on YouCook2 with models trained for 10 thresholds. Training with any proxy outperforms using instance training.

Conclusions

- There is an issue with the current instance-based metrics in video retrieval
- We propose a new metric which allows many-to-many relevancy and non-binary similarity
- These relevancies can be calculated via our proxies
- Considering multiple relevant captions can improve video retrieval results