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Today’s lab

A ASCI CBL Practicals

Tutorial: Introduction to PyTorch
Practical 1: Multi-Layer Perceptrons

Practical 2: Convolutional Neural
Networks

=) Practical 3: Vision Transformers

Part 1: Building a Transformer for
image classification

Experiments

Bonus 1: Importance of Positional
Embeddings

[+ Conclusion

Practical 4: Regular Group Convolutions

Practical 5: Self-Supervised Contrastive
Learning with SimCLR

# » Practical 3: Vision Transformers ) Edit on GitHub

Practical 3: Vision Transformers

Open notebook: (e Xy o ientc il e e

Authors: Phillip Lippe

In this practical, we will take a closer look at a recent new trend: Transformers for Computer Vision. Since Alexey Dosovitskiy et al.
successfully applied a Transformer on a variety of image recognition benchmarks, there have been an incredible amount of follow-
up works showing that CNNs might not be optimal architecture for Computer Vision anymore. But how do Vision Transformers
work exactly, and what benefits and drawbacks do they offer in contrast to CNNs? We will answer these questions by
implementing a Vision Transformer ourselves and train it on the popular, small dataset CIFAR10.

Let’s start with importing our standard set of libraries.

[1]: ## Standard libraries
import os
import numpy as np
import random
import math
import json

Eram Finctanle smnard nardsal



Abstract

Astonishing results from Transformer models on natural language tasks
have intrigued the vision community to study their application to
computer vision problems.

We start with an introduction to fundamental concepts behind the
success of (language) Transformers. We then cover applications of
transformers in vision for several popular recognition tasks.



Overview

1. Transformer, self-attention, multi-head attention, positional encoding
2. Vision transformer, patch token, classification token.

3. Swin transformer, shifted windows, vision backbone.

4. Detector transformers, DETR, box-attention, where-to-attend, 3D.



1. The Transformer

This chapter presents the Transformer network architecture. It is based solely on
attention mechanisms, dispensing with recurrence and convolutions entirely.

Many slides inspired by: https://jalammar.github.io/illustrated-transformer/



https://jalammar.github.io/illustrated-transformer/

Vaswani et al. NIPS 2017
40,000+ citations
The (language) transformer

Attention Is All You Need

Ashish Vaswani* Noam Shazeer™ Niki Parmar* Jakob Uszkoreit*
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.0 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature.



Why are transformers so popular?

Pretrained Transformer models adapt easily and quickly to language
tasks they have not been trained on.

Not limited to language related tasks, they quickly became useful for
other modalities and problem domains.

Yields more interpretable models.

Hugging face open sourced transformers library (and raised 60MS). ';'



Transformer family
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Figure credit: https://xamat.medium.com/transformers-models-an-introduction-and-catalogue-2022-edition-2d1e9039f376



Vanilla transformer
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Encoder: input sequence to vector

Decoder: vector to output sequence

Jointly trained



Vanilla transformer

am a student
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No weight sharing



Attention is all you need
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Self-attention helps the encoder look at other words in the input sentence

The same feed-forward neural network is applied to each position.

The encoder-decoder attention layer focuses on relevant parts of the input sentence



Why needed?

Each sublayer has a residual connection and a layer normalization

4 4
(-P( Add & Normalize )

- 4 4
z ( Feed Forward ) ( Feed Forward )

Q | Semecen-e  SECETTSSPEPP PP TTPrT 3
5 ->( Add & Normalize )
' ( Self-Attention )

e PP r—
RN D @
X1 X2

Thinking Machines



Self-attention example

"The animal didn't cross the street because it was too tired”
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Self-attenton 1n detail

For each token, we create a Query, a Key, and a Value vector by multiplying the
(word) embedding by three matrices that we optimize during training.
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Self-attenton 1n detail

Calculate scaled dot-product attention

Attention(Q, K, V') = softmax(
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Mult-head attention

Allows the model to jointly attend to information from different representation
subspaces at different positions.

MultiHead(Q, K, V) = Concat(head;, ..., heady, )W ©
where head; = At.t.ent.ion(leVz-Q, KWE vwY)

Simply learn multiple versions of WQ, WK and WY and concat output.



Positional encoding

The attention operator is permutation invariant

Positional encoding added to input embedding accounts for word order.

Vaswani et al. use sine and cosine functions of different frequencies.



Overall architecture
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2. Vision Transformer

We explain how transformers can be adapted for visual recognition. Reliance on
CNNs is not necessary and a pure transformer applied directly to sequences of
image patches can perform very well on image classification tasks.



A vision transformer for classification

Published as a conference paper at ICLR 2021

Introduce 16x16 patch as token to avoid

computational complexity
AN IMAGE 1S WORTH 16X16 WORDS:

TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy*f, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*, G (@0]0) d S p ee d / dCCcura Cy t ra d e Off

Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*:f
*equal technical contribution, fequal advising
Google Research, Brain Team

B Competitive with CNN on huge datasets

ABSTRACT

While the Transformer architecture has become the de-facto standard for natural . o e .
language processing tasks, its applications to computer vision remain limited. In O N Iy SU |te d fo r Cla SS |f| cat ion
vision, attention is either applied in conjunction with convolutional networks, or

used to replace certain components of convolutional networks while keeping their

overall structure in place. We show that this reliance on CNNs is not necessary

and a pure transformer applied directly to sequences of image patches can perform

very well on image classification tasks. When pre-trained on large amounts of

data and transferred to multiple mid-sized or small image recognition benchmarks

(ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent

results compared to state-of-the-art convolutional networks while requiring sub-

stantially fewer computational resources to trainm D O S OV i tS koy et a I . I C L R 2 O 2 1



Model overview

Follows standard transformer encoder, adds learnable classification token

Vision Transformer (ViT) Transformer Encoder
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Why do vision transformers work?

Multi-scale soft attention flattens the loss landscapes
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Liu et al. ICCV 2021
Best paper award

segmentation
classification detection ...

3. Swin Transformer —

This chapter presents the Swin Transformer, a general-purpose backbone for
computer vision. It addresses specific vision challenges related to large variations in
the scale of visual entities and the high resolution of pixels in images. It proposes a
hierarchical Transformer whose representation is computed with shifted windows.



Recap: How to classify an image with an MLP?

A 256x256 RGB image requires 200 000 input values

MLP with a single hidden layer with 500 units already implies
100 million parameters

Clearly we need to incorporate an inductive bias into the architecture



From language to vision

Differences between visual and text signals

Multi-scale Locality
(scale invariance) (spatial smoothness)

Translation invariance

[ am a fat cat. I like the green grass. [ am a fat cat.
I am a fat fat cat cat. (invalid) Fat cat is me.



Key idea: Shifted windows

Linear computation complexity with image resolution: from O(n2) to O(n)
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2562=65536 (Global) 16x162=4096 (Local)



Key idea: Shifted windows

Shared key set in same window enables friendly memory access

/ the key set for q ,, shared key set for q and q’
q-—) o i P
q-:_é _-> D— q 2
"
\ —_—>
the key set for q’

Traditional sliding window Non-overlapping window (Swin Transformer)



Key idea: Shifted windows

Shifted non-overlapping windows enable cross-window connections

Layer | Layer I+1

A local window to
perform self-attention

A patch




Swin Transformer architecture

An hierarchical transformer

Architecture Swin Transformer blocks
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Swin Transformer is solid vision backbone

ImageNet Cocoeteation ARE20IK

Classitication and-Segmentation Segmentation




4. Detector Transformers

In this chapter, we cover transformers for object detection. They effectively remove
the need for many hand-designed components like a non-maximum suppression
procedure or anchor generation. We also cover a simple box-attention mechanism
that enables spatial interaction between grid features, as sampled from boxes of

interest, and improves the learning capability of transformers for several 2D and 3D
detection and segmentation tasks.



Recap: Modern Detectors
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Carion et al. ECCV 2020

DETR: First vision transformer for detection

Models detection as set prediction problem using Hungarian loss and
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uses transformer to encode relationship between set elements

Removes the need for hand-crafted modules:
non-maximum suppression, anchor generation, ...



DETR: more detailed look
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Zhu et al. ICLR 2021

Deformable-DETR: for detection and segmentation

Introduces deformable-attention to attend to sparse set of elements
from whole feature map, regardless of spatial size.

Adds multi-scale variant

Faster convergence.




Nguyen et al. CVPR 2022

BoxeR: Box-Attention for 2D and 3D Transformers

Key observation: existing detector transformers ignore the inherent
regularities of the vision modality.

Image features are vectorized the same way as language tokens,
resulting in loss of local connectivity among pixels.

BoxeR-2D

A

Box-Attention

y

BoxeR-3D




Mouvation of Box-Attention

“ Use of grid structure within boxes in attention
‘*’ computation

‘ jgc‘.

.-.-.-.- Enable 2D inductive bias on multi-scale features
L |




Box-Attention

Each query vector with a reference window




Box-Attention

Each query vector with a reference window

Key as learnable vectors of relative positions
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Box-Attention

Each query vector with a reference window

Key as learnable vectors of relative positions

learnable embeddings

o 1 2
0 key

Value vectors are sampled from the window



Box-Attention

Each query vector with a reference window

Key as learnable vectors of relative positions

Value vectors are sampled from the window

——— matrix multiplication

= = = J|earned transform

Attention computation



Where-to-attend module

Learn transformation functions: translation + scaling reference window
A reference window: b = [x, y, wx, wy] and query g ] |
Translation: Ft (b, q) = [x + AX, y + Ay, wx, wy] LT
Scaling: Fs (b, q) =[x, y, wx + Awx, wy + Awy] query X }_‘.} -

Sample a grid of features from the
transformed box

: transformed window
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Extend Box-Attention to Instance-Attention "
which predicts an instance mask by preserving spatial information =

F+F



Multi-scale variant

Each box with a separate where-to-attend module _reference window transformed window

Query vector of each multi-scale feature
maps with different reference window size

Key vectors correspond to transformed boxes
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BoxeR-2D: object detection and instance segmentation

Object Proposals

I |
L 1
I e I Prediction
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BoxeR-2D behavior

High-quality object proposals from encoder overlap with prediction

Predicted boxes from attention module capture regions with multiple aspect ratios

Box-Attention in Encoder Object Proposal Instance-Attention in Decoder Prediction

= decoder window prediction
Ml 3 \

' A 3
g T ;
encoder_ windowr
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Comparisons on GOCO 2017 test-dev

BoxeR outperforms CovNets and Transformers by 2 AP points on all metrics

Method Backbone Epochs end-to-end APt APs5oT AP757T APsT APyt AP T
Faster RCNN-FPN R-101 36 X 36.2 59.1 39.0 18.2 39.0 48.2
ATSS R-101 24 X 43.6 62.1 474 26.1 47.0 53.6
ConvNet Sparse RCNN X-101 36 v 46.9 66.3 51.2 28.6 49.2 58.7
VENet R-101 24 X 46.7 64.9 50.8 28.4 50.2 57.6
Deformable DETR R-50 50 v 46.9 66.4 50.8 27.7 49.7 59.9
Deformable DETR R-101 50 v 48.7 68.1 52.9 29.1 51.5 62.0
Tran SfO rmer Dynamic DETR R-50 50 v 47.2 65.9 51.1 28.6 493 59.1
TSP-RCNN R-101 96 v 46.6 66.2 513 28.4 49.0 58.5
BoxeR-2D R-50 50 v 50.0 67.9 54.7 30.9 52.8 62.6
BoxeR-2D (3 x schedule) R-50 36 v 49.9 68.0 544 30.9 52.6 62.5
BoxeR-2D BoxeR-2D (3 x schedule) R-101 36 v 51.1 68.5 55.8 31.5 54.1 64.6




Same for segmentation

BoxeR outperforms CovNets and Transformers by 2 AP points on all metrics

Epoch | end-to-end | APT  APgt APyt AP | AP APET  APYT AP

Mask R-CNN 36 X | 1 251 460 543 | 388 218 414 505

SN Querylnst 36 x| a1 - : .| @8 w6 450 555
Transformer SOLQ 50 /| 487 286 517 631 | 409 25 438 546
BoxeR-2D  BoxeR-2D (3 schedule) | 36 /| 511 315 541 646 | 438 250 465 519 |




Success cases




Failure cases
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Small objects in low-light conditions still hard Classification failure



BoxeR-3D

Learn transformation function: rotation
A reference window: b =[x, y, wx, wy, 8] and query q
Rotation: Fr (b, g) =[x, y, wx, wy, 8 + AQ]

reference window

Use multi-angle reference windows per query



BoxeR-3D behavior

Multiple heads capture boxes of
different angles and one is well-
aligned with the groundtruth




Comparisons on Waymo Open val set

Much better than vanilla transformer, bit behind on dedicated solutions.

Vehicle Pedestrian
end-to-end
APT APH?T | APt APH?T

PointPillar X 55.2 54.7 60.0 49.1
ConvNet PV-RCNN X 654 64.8 S -

RSN S_1f X 63.0 626 | 654 60.7
Transformer Deformable DETR v 506 592 | 458 36.2
BoxeR-3D BoxeR-3D v 639 63.7 61.5 53.7




Success & Failure

D Ground-truth D Vehicle prediction D Pedestrian prediction




Khan et al., in press.

Further reading

Transformers in Vision: A Survey

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqgas Zamir,
Fahad Shahbaz Khan, and Mubarak Shah

Abstract—Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their
application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input
sequence elements and support parallel processing of sequence as compared to recurrent networks e.g., Long short-term memory
(LSTM). Different from convolutional networks, Transformers require minimal inductive biases for their design and are naturally suited
as set-functions. Furthermore, the straightforward design of Transformers allows processing multiple modalities (e.g., images, videos,
text and speech) using similar processing blocks and demonstrates excellent scalability to very large capacity networks and huge
datasets. These strengths have led to exciting progress on a number of vision tasks using Transformer networks. This survey aims to
provide a comprehensive overview of the Transformer models in the computer vision discipline. We start with an introduction to
fundamental concepts behind the success of Transformers i.e., self-attention, large-scale pre-training, and bidirectional feature
encoding. We then cover extensive applications of transformers in vision including popular recognition tasks (e.g., image classification,
object detection, action recognition, and segmentation), generative modeling, multi-modal tasks (e.g., visual-question answering, visual
reasoning, and visual grounding), video processing (e.g., activity recognition, video forecasting), low-level vision (e.g., image
super-resolution, image enhancement, and colorization) and 3D analysis (e.g., point cloud classification and segmentation). We
compare the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental
value. Finally, we provide an analysis on open research directions and possible future works. We hope this effort will ignite further
interest in the community to solve current challenges towards the application of transformer models in computer vision.



