
Cees Snoek, University of Amsterdam
Efstratios Gavves, University of Amsterdam

With an invited tutorial by: Serge Belongie, University of Copenhagen

http://computervisionbylearning.info

Deep Learning Beyond Classification

http://computervisionbylearning.info/

Standard inference

• N-way classification Dog? Cat? Bike? Car? Plane?

Standard inference

• N-way classification

• Regression

How popular will this movie be in IMDB?

Standard inference

• N-way classification

• Regression

• Ranking

• …

Who is older?

Quiz: What is common?

• N-way classification

• Regression

• Ranking

• …

Quiz: What is common?

• They all make “single value” predictions
• Do all our machine learning tasks

boil down to “single value” predictions?

Beyond “single value” predictions?

• Do all our machine learning tasks
boil to “single value” predictions?

• Are there tasks where outputs
are somehow correlated?

• Is there some structure
in this output correlations?
• How can we predict such structures?

qStructured prediction

Quiz: Examples?

Object detection

• Predict a box around an object
• Images

qSpatial location
qb(ounding) box

• Videos
qSpatio-temporal location
qbbox@t, bbox@t+1, …

Object segmentation

Optical flow & motion estimation

Depth estimation

Godard et al., Unsupervised Monocular Depth Estimation with Left-Right Consistency, 2016

Normals and reflectance estimation

Structured prediction

• Prediction goes beyond asking for “single values”
• Outputs are complex and output dimensions correlated
• Output dimensions have latent structure
• Can we make deep networks to return structured predictions?

Structured prediction

• Prediction goes beyond asking for “single values”
• Outputs are complex and output dimensions correlated
• Output dimensions have latent structure
• Can we make deep networks to return structured predictions?

Convnets for structured prediction

Sliding window on feature maps

• Selective Search Object Proposals [Uijlings2013]
• SPPnet [He2014]
• Fast R-CNN [Girshick2015]

Fast R-CNN: Steps

• Process the whole image up to conv5

Conv
1

Conv
2

Conv
3

Conv
4

Conv
5

Conv 5 feature map

Fast R-CNN: Steps

• Process the whole image up to conv5
• Compute possible locations for objects

Conv
1

Conv
2

Conv
3

Conv
4

Conv
5

Conv 5 feature map

Fast R-CNN: Steps

• Process the whole image up to conv5
• Compute possible locations for objects

qsome correct, most wrong

Conv
1

Conv
2

Conv
3

Conv
4

Conv
5

Conv 5 feature map

Fast R-CNN: Steps

• Process the whole image up to conv5
• Compute possible locations for objects

qsome correct, most wrong
• Given single location

Conv
1

Conv
2

Conv
3

Conv
4

Conv
5

Conv 5 feature map

Fast R-CNN: Steps

• Process the whole image up to conv5
• Compute possible locations for objects

qsome correct, most wrong
• Given single location à ROI pooling module

extracts fixed length feature

Conv
1

Conv
2

Conv
3

Conv
4

Conv
5

Conv 5 feature map

Always 4x4 no
matter the size
of candidate
location

ROI Pooling
Module

Car/dog/bicycle
New box

coordinates

Fast R-CNN: Steps

• Divide feature map in 𝑇𝑥𝑇 cells
• Cell size depends on size of the candidate location

Always 3x3 no matter the size of
candidate location

Some results

Fast R-CNN
• Reuse convolutions for different candidate boxes

qCompute feature maps only once
• Region-of-Interest pooling

qDefine stride relatively à box width divided by predefined number of
“poolings” T

qFixed length vector
• End-to-end training!
• (Very) Accurate object detection
• (Very) Faster

qLess than a second per image
• External box proposals needed

T=5

Faster R-CNN [Girshick2016]

• Fast R-CNN: external candidate locations
• Faster R-CNN: deep network box proposals
• Slide the feature map: 𝑘 anchor boxes per slide

Region Proposal Network

Going Fully Convolutional

• [LongCVPR2014]
• Image larger than network input: slide the network

Conv
1

Conv
2

Conv
3

Conv
4

Conv
5 fc1 fc2

Is this pixel a camel?

Yes! No!

Going Fully Convolutional

• [LongCVPR2014]
• Image larger than network input: slide the network

Conv
1

Conv
2

Conv
3

Conv
4

Conv
5 fc1 fc2

Is this pixel a camel?

Yes! No!

Going Fully Convolutional

• [LongCVPR2014]
• Image larger than network input: slide the network

Conv
1

Conv
2

Conv
3

Conv
4

Conv
5 fc1 fc2

Is this pixel a camel?

Yes! No!

Going Fully Convolutional

• [LongCVPR2014]
• Image larger than network input: slide the network

Conv
1

Conv
2

Conv
3

Conv
4

Conv
5 fc1 fc2

Is this pixel a camel?

Yes! No!

Going Fully Convolutional

• [LongCVPR2014]
• Image larger than network input: slide the network

Conv
1

Conv
2

Conv
3

Conv
4

Conv
5 fc1 fc2

Is this pixel a camel?

Yes! No!

Fully Convolutional Networks

• [LongCVPR2014]
• Connect intermediate layers to output

Fully Convolutional Networks

• Output is too coarse
• Image Size 500x500, Alexnet Input Size: 227x227 à Output: 10x10

• How to obtain dense predictions?

• Upconvolution
• Other names: deconvolution, transposed convolution, fractionally-

strided convolutions

Deconvolutional modules

Convolution
No padding, no strides

Image

Output

https://github.com/vdumoulin/conv_arithmetic

Upconvolution
No padding, no strides

Upconvolution
Padding, strides

Coarse à Fine Output

Upconvolution
2x

Upconvolution
2x

7x7 14x14

224x224

Pixel label probabilities

Ground truth pixel labels

0.8 0.1 0.9

1 0 0

Small loss generated
Large loss generated

(probability much higher than ground truth)

Structured losses

Deep ConvNets with CRF loss

• [Chen, Papandreou 2016]
• Segmentation map is good but not pixel-precise
• Details around boundaries are lost

• Cast fully convolutional outputs as unary potentials
• Consider pairwise potentials between output dimensions

Deep ConvNets with CRF loss

• [Chen, Papandreou 2016]

Deep ConvNets with CRF loss

• [Chen, Papandreou 2016]
• Segmentation map is good but not pixel-precise
• Details around boundaries are lost

• Cast fully convolutional outputs as unary potentials
• Consider pairwise potentials between output dimensions
• Include Fully Connected CRF loss to refine segmentation

𝐸 𝑥 = ∑𝜃! 𝑥! + ∑𝜃!"(𝑥! , 𝑥")
Unary loss Pairwise lossTotal loss

𝜃!" 𝑥!, 𝑥" ~ 𝑤# exp −𝛼 𝑝! − 𝑝"
$ − 𝛽 𝐼! − I"

$ +𝑤$ exp(−𝛾 𝑝! − 𝑝"
$)

Examples

Mask R-CNN

• State-of-the-art in semantic segmentation
• Heavily relies on Fast R-CNN
• Can work with different architectures, also ResNet
• Runs at 195ms per image on an Nvidia Tesla M40 GPU
• Can also be used for Human Pose Estimation

Mask R-CNN: R-CNN + 2 layers

Mask R-CNN: ROI Align

Mask R-CNN

Mask R-CNN

Mask R-CNN

Unet

Ronneberger, Fischer, Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI 2015

YOLO

• ‘One-shot’ detection
• No proposals à Much faster

Redmon, Divvala, Girshick, Farhadi, You Only Look Once: Unified,
Real-Time Object Detection, 2015

YOLO v5

ViT

Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, 2020

Swin Transformer

Liu et al., Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, 2021

Swin Transformer

SINT: Siamese Networks for Tracking

Tao, Gavves, Smeulders, Siamese Instance Search for Tracking, 2016

SINT: Siamese Networks for Tracking

• While tracking, the only definitely correct training example is the first frame
• All others are inferred by the algorithm

• If the “inferred positives” are correct, then the model is already good enough and
no update is needed

• If the “inferred positives” are incorrect, updating the model using wrong positive
examples will eventually destroy the model

Basic Idea

• No model updates through time to avoid model contamination
• Instead, learn invariance model 𝑓(𝒅𝑥)

• invariances shared between objects
• reliable, external, rich, category-independent, data

• Assumption
• The appearance variances are shared amongst object and categories
• Learning can accurate enough to identify common appearance variances

• Solution: Use a Siamese Network to compare patches between images
• Then “tracking” equals finding the most similar patch at each frame (no temporal modelling)

Training

loss

CNN

f(.)

CNN

f(.)

𝑥! 𝑥"

𝑓(𝑥!) 𝑓(𝑥")

Marginal Contrastive Loss:

𝐿 𝑥! , 𝑥" , 𝑦!" =
1
2𝑦!"𝐷

+
1
2 1 − 𝑦!" max(0, 𝜎 − 𝐷#)

𝑦!" ∈ {0,1} 𝐷 = 𝑓 𝑥! − 𝑓(𝑥") #

Matching function (after learning):
𝑚 𝑥! , 𝑥" = 𝑓 𝑥! 8 𝑓 𝑥"

Training

loss

CNN

f(.)

CNN

f(.)

𝑥! 𝑥"

𝑓(𝑥!) 𝑓(𝑥")

Marginal Contrastive Loss:

𝐿 𝑥! , 𝑥" , 𝑦!" =
1
2𝑦!"𝐷

+
1
2 1 − 𝑦!" max(0, 𝜎 − 𝐷#)

𝑦!" ∈ {0,1} 𝐷 = 𝑓 𝑥! − 𝑓(𝑥") #

Matching function (after learning):
𝑚 𝑥! , 𝑥" = 𝑓 𝑥! 8 𝑓 𝑥"

Training

loss

CNN

f(.)

CNN

f(.)

𝑥! 𝑥"

𝑓(𝑥!) 𝑓(𝑥")

Marginal Contrastive Loss:

𝐿 𝑥! , 𝑥" , 𝑦!" =
1
2𝑦!"𝐷

+
1
2 1 − 𝑦!" max(0, 𝜎 − 𝐷#)

𝑦!" ∈ {0,1} 𝐷 = 𝑓 𝑥! − 𝑓(𝑥") #

Matching function (after learning):
𝑚 𝑥! , 𝑥" = 𝑓 𝑥! 8 𝑓 𝑥"

0.16

Training

loss

CNN

f(.)

CNN

f(.)

𝑥! 𝑥"

𝑓(𝑥!) 𝑓(𝑥")

Marginal Contrastive Loss:

𝐿 𝑥! , 𝑥" , 𝑦!" =
1
2𝑦!"𝐷

+
1
2 1 − 𝑦!" max(0, 𝜎 − 𝐷#)

𝑦!" ∈ {0,1} 𝐷 = 𝑓 𝑥! − 𝑓(𝑥") #

Matching function (after learning):
𝑚 𝑥! , 𝑥" = 𝑓 𝑥! 8 𝑓 𝑥"

0.79

Spatial Transform Networks

Problem

• ConvNets sometimes are robust enough to input changes
• While pooling gives some invariance, only in deeper layers the pooling

receptive field is large enough for this invariance to be noteworthy
• One way to improve robustness: Data augmentation

• Smarter way: Spatial Transformer Networks

Basic Idea

• Define a geometric transformation matrix

•Θ = 𝜃## 𝜃#$ 𝜃#%
𝜃$# 𝜃$$ 𝜃$%

• Four interesting transformations
• Identity, i.e. Θ = 1 0 0

0 1 0
• Rotation, e.g., Θ ≈ 0.7 −0.7 0

0.7 0.7 0 for 459, as cos(:;) ≈ 0.7

• Zooming in, e.g. Θ ≈ 0.5 0 0
0 0.5 0 for 2X zooming in

• Zooming in, e.g. Θ ≈ 2 0 0
0 2 0 for 2X zooming out

Basic Idea

• Then, define a mesh grid (𝑥!& , 𝑦!&) on the original image and
apply the geometric transformations

•
𝑥!'

𝑦!'
= Θ ⋅

𝑥!&

𝑦!&
1

• Produce the new image using the transformation above and an
interpolation method
• Learn the parameters Θ and the meshgrid from the data
• A localization network learns to predict Θ given a new image

Sequential data

Recurrent Networks

• Simplest model
• Input with parameters 𝑈
• Memory embedding with parameters 𝑊
• Output with parameters 𝑉

𝑥$

𝑦$

𝑈

𝑉

𝑐!

Output parameters

Input parameters

Memory

Input

Output

𝑈

𝑉

𝑊
Memory
parameters

Recurrent Networks

• Simplest model
• Input with parameters 𝑈
• Memory embedding with parameters 𝑊
• Output with parameters 𝑉

𝑥$

𝑦$ 𝑦$%&

𝑈

𝑉

𝑊𝑐! 𝑐!"#

Output parameters

Input parameters 𝑈

𝑉

Memory

Input

Output

𝑈

𝑉

𝑊
Memory
parameters

Recurrent Networks

• Simplest model
• Input with parameters 𝑈
• Memory embedding with parameters 𝑊
• Output with parameters 𝑉

𝑥$

𝑦$

𝑥$%& 𝑥$%# 𝑥$%'

𝑦$%& 𝑦$%# 𝑦$%'

𝑈

𝑉

𝑊𝑐! 𝑐!"# 𝑐!"$ 𝑐!"%

Output parameters

Input parameters 𝑈

𝑉

𝑊

𝑈

𝑉

𝑊

𝑈

𝑉

𝑊

Memory

Input

Output

𝑈

𝑉

𝑊
Memory
parameters

Folding the memory

𝑥$

𝑦$

𝑥$%& 𝑥$%#

𝑦$%& 𝑦$%#

𝑈

𝑉

𝑊

𝑈

𝑐! 𝑐!"# 𝑐!"$

𝑈

𝑉

𝑊

𝑥$

𝑦$

𝑊
𝑉

𝑈

𝑐!
(𝑐$(&)

Unrolled/Unfolded Network Folded Network

𝑊

RNN vs NN

• What is really different?
• Steps instead of layers
• Step parameters shared whereas in a Multi-Layer Network different

𝑦& 𝑦# 𝑦'

𝐿𝑎𝑦𝑒𝑟
1

𝐿𝑎𝑦𝑒𝑟
2

𝐿𝑎𝑦𝑒𝑟
3

3-gram Unrolled Recurrent Network 3-layer Neural Network

“Layer/Step” 1 “Layer/Step” 2 “Layer/Step” 3

𝑈

𝑉

𝑊

𝑈

𝑉

𝑊

𝑈

𝑉

𝑊& 𝑊#𝑊 𝑊'

Training an RNN

• Cross-entropy loss

𝑃 =1
&,)

𝑦&)
*!" ⇒ ℒ = − log𝑃 =8

&

ℒ& =−
1
𝑇
8
&

𝑙& log 𝑦&

• Backpropagation Through Time (BPTT)
• Be careful of the recursion. The non-linearity is influencing

itself. The gradients at one time step depends on gradients on
previous time steps
• Like in NN à Chain Rule
• Only difference: Gradients survive over time steps

RNN Gradients
ℒ = 𝐿(𝑐! 𝑐!"# … 𝑐# 𝑥#, 𝑐$;𝑊 ;𝑊 ;𝑊 ;𝑊

𝜕ℒ%
𝜕𝑊 =,

&'#

(
𝜕ℒ%
𝜕𝑐%

𝜕𝑐%
𝜕𝑐&

𝜕𝑐&
𝜕𝑊

𝜕ℒ
𝜕𝑐%

𝜕𝑐%
𝜕𝑐&

=
𝜕ℒ
𝜕c(

⋅
𝜕𝑐%
𝜕c("#

⋅
𝜕𝑐%"#
𝜕c(")

⋅ … ⋅
𝜕𝑐&*#
𝜕c+

≤ 𝜂%"&
𝜕ℒ%
𝜕𝑐%

• The RNN gradient is a recursive product of ,-!
,."#$

Vanishing/Exploding gradients

• +ℒ
+-!

= +ℒ
+.#

⋅ +-$
+.#%&

⋅ +-$%&
+.#%'

⋅ … ⋅ +-!(&
+.)!

• +ℒ
+-!

= +ℒ
+.#

⋅ +-$
+.#%&

⋅ +-$%&
+.#%'

⋅ … ⋅ +-&
+.)!

< 1 < 1 < 1

Eℒ
EG ≪ 1⟹ Vanishing gradient

> 1 > 1 > 1

Eℒ
EG

≫ 1⟹ Exploding gradient

RNN & Chaotic Systems
• The latent memory space is composed of multiple dimensions
• A subspace of the memory state space can store information if

multiple basins of attraction in some dimensions exist
• Gradients must be strong near the basin boundaries

RNN & Chaotic Systems

• In the figures x/ ∝ 𝑐& and 𝑥& ∝ F(𝑊𝑥&0# + 𝑈𝑢& + 𝑏)

Figures from: Glorot and Bengio, Understanding the difficulty of training deep feedforward neural networks, 2010

Advanced RNN: LSTM

• 𝜎 ∈ (0, 1): control gate – something like a switch
• tanh ∈ −1, 1 : recurrent nonlinearity

𝑖 = 𝜎 𝑥$𝑈(*) +𝑚$(&𝑊(*)

𝑓 = 𝜎 𝑥$𝑈(,) +𝑚$(&𝑊(,)

𝑜 = 𝜎 𝑥$𝑈(-) +𝑚$(&𝑊(-)

K𝑐$ = tanh(𝑥$𝑈 . +𝑚$(&𝑊(.))

𝑐$ = 𝑐$(&⊙𝑓 + K𝑐$ ⊙ 𝑖

𝑚$ = tanh 𝑐$ ⊙𝑜

Take away message

• Deep Learning is good not only for classifying things
• Structured prediction is also possible
• Multi-task structure prediction allows for unified networks
• Discovering structure in data is also possible
• Training neural networks with sequences with recurrent nets

