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Tomorrow

Invited tutorial by Laurens van der Maaten

 Efficient convolutional networks
* From visual recognition to visual reasoning

Note change of location
 Polderzaal, next to Café-Restaurant Polder



Note: different location tomorrow
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Lab

Lab Thursday Vision by generative adversarial network

Each student hands in the Python notebooks per assignment
completed with code and answers.

Deadline: April 30t", 2019



Overview Day 4

Computer video by learning

1. Introduction, activities, data, paradox, tasks

2. Video representations, appearance, motion, space and time
3. VideoLSTM, convolutions, attention and localization for free
4. Video time, properties, encoders and evaluation

5. Video and language for tracking and action segmentation

6. Weakly-supervised video recognition



1. Introduction

By 2022 there will be 45 billion cameras in the world, many of
them tiny, connected and live streaming 24/7. Self-driving cars,
drones and service robots are just three manifestations. For all
these applications it will be of critical importance to understand
what is happening where and when in the video streams. In this
chapter we cover activities, the data paradox, and challenges.



Motivation: Internet of things that video

45 billion cameras by 2022... [LDV Capital]



Technology: self-driving cars
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Forensics: Analyzing terrorist behavior
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Well-being: elderly monitoring

Figure 1. Examples of interaction patterns in a nursing home

Chen et al. MM 2004



Safety: preventive monitoring
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Street surveillance
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Social: media monitoring
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Retall: cashier-less shopping




What is an activity?

No clear definition in the literature, also known as
action or event.

Typically involves person interacting with an object

Grooming an animal Birthday party




Goal of activity recognition

Understand what is happening where, when and why

Kissing




Paradox

As activities become more and more specific, it is
unrealistic to assume that ample examples to learn from
will be commonly available.




-

gh

e

§Supervision dependenc

|

State-of-the-

Art

Limited

Video understanding

Complete



ImageNet equivalent for videos?

@ @® 1000 classes
I M ™ G E ® 1.2Mimages

@® “Cleanly” labeled



Activity datasets are small scale




Activity Understanding Datasets (2015)

long and untrimmed videos
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ACTIVITYNET

Polishing Shoes

Peeling Potatoes Playing Badminton
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ImageNet equivalent for videos?

IMAGE
ACTIVITYNET

@® 1000 classes
® 1.2M images

@® “Cleanly” labeled

@® 200 “fine-grained” classes
@® 20K videos
® Untrimmed



Diversity comparison
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ImageNet equivalent for videos?

IMAGENET
ACTIVITYNET

@® 1000 classes
® 1.2M images

@® “Cleanly” labeled

@® 200 “fine-grained” classes
@® 20K videos
® Untrimmed

@400 600 “fine-grained” classes
@-300K 500K videos
@® Trimmed



Kinetics Dataset

Abseiling

Air drumming

Answering
Questions

https://deepmind.com/research/open-source/open-source-datasets/kinetics/



Activity Understanding Tasks

Activity
Classification

7 190p

Salsa spinning
Basketball Dunk

Temporal Activity
Localization

Spatlotemporal

Video
Summarization

Video
Captioning

Actor-action Activity

Other tasks: Segmentation Predictio



2. Video representations

In this chapter we consider video representation learning for
action recognition. We analyze existing algorithms for their ability
to capture intrinsic and extrinsic action properties, including
appearance, motion, spatial and temporal extent.



Shallow action recognition

Spatio-temporal Space-time Space-time
Interest point detection patch/trajectory descriptor
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Motion is salient

Motion offers crucial clue where to attend in video




Dense sampling
in each spatial scale




2D Appearance only

Pre-train on ImageNet, fine-tune on video concepts
Average pooling over multiple frames per video shot

Good for objects and scenes, so and so for actions
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3D Appearance only

Extracts multiple features from both spatial and temporal
dimensions by performing 3D convolutions

temporal

Need large amounts of data to learn filters

Jietal. ICML10



2D vs 3D convolution

A) Applying 2D convolution on an image results in an image.

k
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output k

< output
W L

(a) 2D convolution (b) 2D convolution on multiple frames

B) Applying 2D convolution on a video volume (multiple frames
as multiple channels) also results in an image

C) Applying 3D convolution on a video volume results in

another volume, preserving short term temporal information
of the input signal

L output

(C) 3D convolution



2D Appearance and spatial

Models spatial extent of action mildly by separating stream
for center crop and entire frame

Considers various temporal pooling schemes
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2D Appearance and motion

Learn spatial and temporal filters separately
Pre-train on ImageNet, fine-tune for actions

Fusion by averaging or SVM

Spatial stream ConvNet

conv1 || conv2 (| conv3 || conv4 || conv5 fullé full7 ||softmax
7X7x96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. norm. pool 2x2
single frame | P00! 2x2 || pool 2x2 class

score

Temporal stream ConvNet fusion

. conv1 || conv2 || conv3 || conv4 || conv5 fullé full7 ||softmax -
7X7x96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout

- norm. ||pool 2x2 pool 2x2
multi-frame pool 2x2

. optical flow
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2D Appearance, motion and spatial

Generalize ResNet for video
Remove fully-connected layers

Appearance Stream

-
a
-

X gAUO0D
D
X QAUOD |g
O
X JAUOD
®
X GAUOD

®
SS0[




Inflated 3D (appearance and motion)

Simply convert 2D classification models into 3D ConvNets.

From 2D architecture, inflate all the filters and pooling
kernels — effectively adding a temporal dimension

Square N x N filters become cubic: Nx N x N retion
10
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3D ConvNet | 3D ConvNet
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Two-in-one Stream

Appearance, motion and spatial into a single stream
Exploits feature modulation
Better accuracy, with half the parameters

Particularly well suited for spatio-temporal action detection

Two-in-one Stream |
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optical flow




Two-In-one Stream visualization

Flow image Motion condition maps

HANANEERND

scale-0 scale-10 scale-20 scale-27 scale-28 scale-32  scale-43 scale-105  scale-114  scale-127

f / |

shift-0 shift-10 shift-20 shift-27 ) i Y shift-105 shift-114 shift-127

RGB image RGB features before modulation

22 1-105 M22_1-114 M22_1-127

Modulated features focus more on moving actors.



2D Appearance, motion and temporal

Key insight: exploit temporal order as soft label
Actions vary in appearance but order is preserved

Frames Features v from frames x  Rankers u from features v Parameters of ranker u as video representation

ui
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Unsupervised i I Supervised

Video-specific ranker parameters as representation
Similar actions = similar ranking parameters



2D Appearance and temporal

LSTM models sequential memories in the long and short term
ConvNet-fc vectors as input, no spatial information encoded

Visual Input Visual Features Sequence Learning Predictions
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2D Appearance, temporal, spatial

Look for best locations leading to correct action classification

Stays close to soft-Attention for image captioning [ ],
Vectorizes attention and appearance, ignores the motion inside a video.
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3. VideoLSTM

This chapter presents VideoLSTM. An LSTM able
to model spatiotemporal dynamics of videos by
preserving 2D spatial structure of the frames over time
adding motion-based attention
enabling action localization from action class labels only

VideoLSTM convolves, attends and flows for action recognition.
Zhenyang Li, Kirill Gavrilyuk, Efstratios Gavves, Mihir Jain, and Cees Snoek.
CVIU 2018



Convolutional (A)LSTM

Replace the fully connected multiplicative operations in
an LSTM unit with convolutional operations

I = o(Wai * Xy + Whi + Hy_y +b;)
Fy=o0(Wyy * )Aft + Whyx Hy_q + by)
Or = 0(Wao % Xt + Who % Hi_1 + b,)
Gy = tanh(W,. * )N(t + Whe* Hi_1 + b.)
Ci =F 001+ 1 © Gy

H; = O; ® tanh(Cy),

Generate attention by shallow ConvNet instead of MLP



A(ttention)LSTM

ALSTM

‘ Recurrent Cell W - ¥ ’

Attention a Vectorization x

Feature Map




Convolutional ALSTM

ALSTM Convolutional ALSTM
| MLP | - = \I | ConvNet = ]
| Recurrent Cell W - ¥ S/ " Contolutional Recurrent Cell W + X

- woin! - 1
A X X

a’ %

yR e |

Attention a ||Vectorization x
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Attention A Feature Map

Feature Map

Convolutional ALSTM preserves spatial dimensions over time



ALSTM

Video time
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Convolutional ALSTM




Motion-based attention

Prediction = “Tennis swing”

“Tennis swing” “Tennis swing”

“Tennis swing”

Video frame —

Attention map —

\
\
\
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Motion information to infer the attention in each frame




Temporal smoothing

Input frame sequence
1 VideoLSTM
| ™ -
'EF{'IFE-F._- "-__. Up-sampling
i
Il====Ill i
Attention feature
maps

Attention saliency over frames



VideoLSTM vs ALSTM

| | | | ]
: ' VideoLSTM

0.7 e A """" VideoLSTM (w/o smoothing) =:=&x:=
i ALSTM

06 b N ALSTM (w/o smoothing) - -~

Recall (higher better)

0.1 0.2 0.3 0.4 0.5 0.6

Overlap w/ groundtruth (higher better)

VideoLSTM localizes much better, temporal smoothing helps



Qualitative results

Video VideoLSTM Attention
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Qualitative results

Video VideoLSTM Attention
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Qualitative results

Video VideoLSTM Attention

‘ngWithDog: 0.024048

HorseRace: 0.0096042




4. \Video Time

Time-aware encoding of frame sequences in a video is a
fundamental problem in video understanding. While many
attempted to model time in videos, an explicit study on
quantifying video time is missing. We describe three
properties of video time, and formulate tasks able to
quantify the associated properties.
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Properties of Video Time

Temporal asymmetry
— There is a clear distinction between the forward and the
backward arrow of time

Forward Backward



Arrow of time prediction

The task of distinguishing natural order and reverse order

of frames, a binary classification task.

A conceptual, ultimate temporal task: Output is defined by
order of the input, regardless of the input representation.

Temporal
modeling

Binary
classification

—




Properties of Video Time

Temporal asymmetry
— There is a clear distinction between the forward and the
backward arrow of time.

Temporal continuity
— Future observations are expected to be a smooth continuation of
past observations

k3 \

F -
(L BCN _sprmsmrpoorsrmseconcueom

Continuous Non-continuous:

swapping two frames



Future frame selection

In this task, we sample N frames from a video where the
first N-1 frames are given but the last frame is missing.

The goal is to select the correct future frame, given a list of
K choices from the same video.




Properties of Video Time

Temporal causality
— When we observe an event, we observe a chain of causes and
then effects

action: Pretending to put something into something

ordered shuffled



Action template classification

The task of action classification where classes are
formulated as template-based textual descriptions e.qg.
Putting something into something

NG oYe

O Putting something into something

¥ Pretending to put something into something

O Holding something behind something



Modern models

LSTMs learn transitions between
subsequent states

3D convolutions learn spatiotemporal
patterns within a video
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Proposed mode|

Time-aligned dense net




Proposed mode|

Time-aligned dense net




Proposed mode|

Time-aligned dense net




Proposed mode|

Time-aligned dense net

FC-ReLU-Dropout

FC




Arrow of time prediction - Datasets

Pickup et al.




Arrow of time prediction - Results
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Sequential encoders like LSTM and ours better suited than C3D.



Arrow of time prediction - tSNE
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Arrow of time prediction — per class

mC3D _®mLSTM = Ours

@ O O N\t
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Temporally causal classes easier?



Future frame selection - datasets

We divide the actions into three categories:

2 Clear arrow — actions with visible arrow of time e.qg.
bowling, diving, billiards, ... (24 classes)

a2 Semi-clear arrow — actions with semi-visible arrow of
time e.g. archery, military march, ... (17 classes)

2 unclear arrow — actions that arrow of time is not
visible e.g. haircut, play flute, ... (60 classes)




Future frame selection - results

Average over predictions from {0.4, 0.8, 1.3, 1.7, 2.5, 3.3, 4.2,
5.0,5.8, 6.7, 7.5, 8.3} seconds ahead

UCF24-Future

70

60

50

40

30

20 = — chance
10

0

Frame similarity LSTM C3D Ours

Learning both spatial and temporal dependencies are necessary



Action Template Classification - Dataset

Something-something dataset
174 template classes

Pretending to close something without closing it

E 7 - = . . 2 . T - .
i‘ » ‘ : 11

closing something

Goyal et al. ICCV 17



Action Template Classification - Results

Something-Something
40

30

20

Prec@1

10

= chance
LSTM Cc3D Ours

Model should be able to parameterize the temporal conditional
dependencies per time step freely



Conclusions

Best video representations for actions are learned
Having sufficient examples available not obvious for actions
Things become worse for localized actions

VideoLSTM hardwires convolutions inside attention LSTM
Derives attention from what moves in video
Localization from a video-level action class label only

Video time representation open challenge



5. Video & Language

The common tactic to spatiotemporal video understanding
Is to track a human-specified box or to learn a deep
classification network from a set of predefined action
classes. In this Chapter we will present an alternative
approach, that allows for spatiotemporal recognition from a
natural language sentence as input, and show its potential
for object tracking and action segmentation.




Image understanding from sentence

Find object location in image based on language

ground truth D

prediction



Object segmentation from a sentence

Image embedding — spatial feature map through CNN
Sentence embedding — final hidden state in LSTM

CNN

“people on the > LSTM

~

-

spatial feature
map

~

J

right side”

encoded
expression

fully
convolutional
classification

Q-

segmentation
output

Fully convolutional classification — match input sentence to
every location on the spatial grid and up-sample



l. Tracking

Zhenyang Li Ran Tao Efstratios Gavves Cees Snoek Arnold Smeulders

Tracking by Natural Language Specification. In CVPR 2017.



A long standing computer vision challenge
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Conventional wisdom

Step 1: Specify the box

MEEM




Step 2: Start tracking

[ A

5




Key contribution

Specify the target by language instead of box

“Track the little green person with the pointy ears and the beige robe”



Benefits of language

Tracking objects in multiple videos simultaneously
No ‘first-frame’ requirement, live monitoring across streams

“Man with blue pants”




Challenges

How to obtain a tight box around an object from text?

Text ambiguity vs object variance vs object invariance?

What happens if the description is no longer valid?



Model I. Lingual specification only

LSTM encodes the text query

s; = LSTM(W) = hg

= “Little” “gre “person’®®® “robe”



Model I. Lingual specification only

LSTM encodes the text query

s; = LSTM(W) = hg

Dynamically generate filters from LSTM output

ppnauage = o(Wost + by)

= “Little” “gre “persouit0® “robe”



Model I. Lingual specification only

LSTM encodes the text query

s; = LSTM(W) = hg

Dynamically generate filters from LSTM output
planguage — 5 (W, s, + b,)

Convolve with input frame

Aianguage — vianguage * It

Dynamic
LSTM 000 Filter
generatl

W= “Little” “green” “persui’*®® “robe”

conv5




Model I. Lingual specification only

Tracking by repeated ‘detection’




Model II: Lingual first, then visual

Use Model | for initialization, then track




Model IlI. Lingual & visual

Adapts the lingual specification over time




Augment tracking video with sentences

Tracking datasets: OTB100 and ImageNet Videos

. ., ok T RS T 2 :
singer1 o St At jogging




Augment tracking video with sentences

Tracking datasets: OTB100 and ImageNet Videos
We add language description about the target in first frame

singer1 jogging

"left singer in white dress" "white car on the left" "woman in dark pants on left"

"woman in white next to the
woman in dark pants"



AUC score
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AUC score

os - Model |: Lingual only ]
Model Il: Lingual, then visual

Model Ill; Lingual & visual |
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sorted by first frame accuracy



AUC score
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“The black and white dog”

Lingual only Lingual, then visual Lingual & visual

L—



“White car on the left”

Lingual only Lingual, then visual Lingual & visual




“Girl in yellow shirt and purple pants”

Lingual only Lingual, then visual Lingual & visual




Track by language and box specification

"female skater in red"

Box specification Language and box specification

Language helps against drift.



Track by language and box specification

Box specification Language and box specification

Language helps against drift.



Il. Actions

Kirill Gavrilyuk Amir Ghodrati Zhenyang Li Cees Snoek

Actor and Action Video Segmentation from a Sentence. In
CVPR 2018.



Goal

“‘woman in purple dress running”

Input video




Benefits of language

Distinguish fine-grained actors within same super-category

|dentify actor and action instances

Segment actors & actions outside pre-defined vocabulary



Actor-action video segmentation

Different goal: recognize after learning from provided actor
and action label pairs

3782 videos, 7 actors, 8 actions Joint actor-action detection and segmentation in videos
using single RGB and Flow frames as input

Xu et al. CVPR15 Kalogeiton et al. ICCV17



Augment action video with sentences

A2D Sentences J-HMDB Sentences
“small white fluffy puppy biting the cat” “man standing up from the sofa”

“yellow car is flipping over onto its roof” “man in white top and black pants throwing darts”

i

PTTE ]

Two datasets extended with more than 7,500 natural language descriptions



Model

Textual Encoder

o 9

o £

a man in dark = O
suit standing on -»| 97
the back o -g
=0

Video Encoder

Nx512x512x3

Decoding with dynamic filters

et

v v v
| FC layer | | FC layer | | FC layer |
\/ \/ \/
d iq Al . _dynamic filters dynamic filters
ONN erBrd2Vec is‘préstsained on  Urix 1o
rpGoogleNews ]l anl
* * *
32 x 32 x 832 128 x 128 x 256 512 x 512 x 128
52
© = .
28 ned on|Ki nd Image

32 x 32
response map

128 x 128 512 x 512
response map response map




Training

Training sample - video clip, sentence and binary segmentation mask

furry white dog

eating food
from the floor
: 32 x 32
128 x 128

512 x 512

Input
19b.e|

Nx512x512x 3



L OSS

Loss per sample takes into account multiple resolutions

1 T T .
L= al ETZEZZ%

reR 1=1 j7=1
Logistic loss for per-pixel classification

L = log(1+ exp (=SY"))

1] 717



Evaluation metric

Intersection over Union
Area of Overlap E
Area of Union .

MAP 0.5:0.95: mean over precision for
various loU levels in range of [0.5:0.05:0.95]

loU =




Ablation: image or video?

A2D
Sentences

IS

Number of frames
0]

=
(@]

46 48 50 52 54

Overall loU

For segmentation, video is more than just a set of independent frames



More ablation

A2D
Sentences

Single 49.4

Multiple

46 48 50 52 54

Overall loU

Multi-resolution for better training

A2D
Sentences
LSTM
BILSTM 52.1
1D CNN 53.6
46 48 50 52 54
Overall loU

Simple 1D CNN outperforms LSTM



Comparison with image-baselines

2
HuI et Image-RGB
al.
3.3
Li et al.
Ours
0 10 20 30

MAP 0.5:0.95 on A2D sentences (higher is better)

Existing models without pre-training results in modest recognition.



Comparison with image-baselines

uet = 432 " Image-RGB
& = Video-RGB
33
Lictal. G
ours
0 10 20 30

mAP 0.5:0.95 on A2D sentences (higher is better)

Our model outperforms both baselines.



Comparison with image-baselines

uet = 432 " Image-RGB
& = Video-RGB
33 Video-Flow
Lictal. G
ours
21.5
0 10 20 30

mAP 0.5:0.95 on A2D sentences (higher is better)

Incorporating flow in our video model further improves results.



Qualitative results: simple cases

“kid rolling over” “brown dog crawlmg on the ground”




Qualitative results: hard cases

“man standing on the left”

“a man is climbing a rock”




Qualitative results: failure cases

“man walking with a woman on the beach”
“‘woman walking with a man on the beach”
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Qualitative comparison with baselines

Hu et al. Li et al. Our model Groundtruth

o1 I N

“cat climbing wall”

- n_é;ry‘?v
.. V“W.v ;l _-nn
e :

‘a caris rollmg

v prile

“a black dog is walking on the left”




Segmentation from actor-action pairs

We use actor-action pairs from original A2D dataset as input




Segmentation from actor-action pairs

Actor
Class-Average Mean loU
Xu et al. 45.7 -
Kalogeiton et al. 73.7 49.5
Our model 71.4 53.7

ball flying

jumping

adult jumping

Our method outperforms the state-of-the-art in most cases.



Conclusion

New type of human-machine interaction for video understanding.

More robust tracking and segmentation of actors and actions.

Representations enable novel application scenarios.



Thank you!
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