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Tomorrow
Invited tutorial by Laurens van der Maaten
• Efficient convolutional networks 
• From visual recognition to visual reasoning

Note change of location
• Polderzaal, next to Café-Restaurant Polder



Note: different location tomorrow

Friday

Monday - Thursday



Lab
Lab Monday Vision by multi-layer perceptron
Lab Tuesday Vision by convolutional neural network
Lab Wednesday Vision by recurrent neural network 
Lab Thursday Vision by generative adversarial network

Each student hands in the Python notebooks per assignment 
completed with code and answers. 

Deadline: April 30th, 2019



Overview Day 4

Computer video by learning
1. Introduction, activities, data, paradox, tasks
2. Video representations, appearance, motion, space and time
3. VideoLSTM, convolutions, attention and localization for free
4. Video time, properties, encoders and evaluation
5. Video and language for tracking and action segmentation
6. Weakly-supervised video recognition



1. Introduction

By 2022 there will be 45 billion cameras in the world, many of 
them tiny, connected and live streaming 24/7. Self-driving cars, 
drones and service robots are just three manifestations. For all 
these applications it will be of critical importance to understand 
what is happening where and when in the video streams. In this 
chapter we cover activities, the data paradox, and challenges.



Motivation: Internet of things that video

45 billion cameras by 2022… [LDV Capital]



Technology: self-driving cars



Forensics: Analyzing terrorist behavior



Well-being: elderly monitoring

Chen et al. MM 2004



Safety: preventive monitoring



Street surveillance



Social: media monitoring



Retail: cashier-less shopping



What is an activity?
No clear definition in the literature, also known as 
action or event.

Typically involves person interacting with an object

Working on sewing projectRepairing an appliance

Birthday partyGrooming an animal



Goal of activity recognition

Understand what is happening where, when and why

Kissing



Paradox
As activities become more and more specific, it is 
unrealistic to assume that ample examples to learn from 
will be commonly available.
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ImageNet equivalent for videos?

� 1000 classes
� 1.2M images
� “Cleanly” labeled

Kay et al. The Kinetics Human Action Video Dataset. CVPR 2017.



Activity datasets are small scale

101 classes / 13,320 clips / web video UCF101

THUMOS14

Hollywood2

HMDB51

UCF Sports

KTH

101 classes / 15,915 clips / web video 

12 classes / 1,707 clips / movies

51 classes / 6,766 clips / diverse video

10 classes / 150 clips / sports broadcasts 

6 classes by 25 actors

Recently, many new datasets proposed



Activity Understanding Datasets (2015)

long and untrimmed videos

short and trimmed videos

more
diverse

less
diverse

KTH (2004)

Hollywood (2008)

UCF (2013)

THUMOS (2014)

Long Jump

Caba et al. CVPR15
ACTIVITYNET



Peeling Potatoes Playing Badminton Polishing Shoes

Shoveling Snow Horse Riding Vacuuming Floor

Caba et al. CVPR15



ImageNet equivalent for videos?

� 1000 classes
� 1.2M images
� “Cleanly” labeled

� 200 “fine-grained” classes
� 20K videos
� Untrimmed

Kay et al. The Kinetics Human Action Video Dataset. CVPR 2017.



Diversity comparison
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Ratio of  top level categories

Personal care Eating & drinking Household activities Caring & helping
Work-relared Socializing & leisureSports & exercises Simple actions



ImageNet equivalent for videos?

� 1000 classes
� 1.2M images
� “Cleanly” labeled

� 200 “fine-grained” classes
� 20K videos
� Untrimmed

� 400 600 “fine-grained” classes
� 300K 500K videos
� Trimmed

Kay et al. The Kinetics Human Action Video Dataset. CVPR 2017.



Kinetics Dataset

Abseiling

Air drumming

Answering 
Questions

Kay et al. The Kinetics Human Action Video Dataset. CVPR 2017.

https://deepmind.com/research/open-source/open-source-datasets/kinetics/

Carreira & Zisserman CVPR17



Activity Understanding Tasks

Spatiotemporal 
Activity Localization

Ti
m

e

Activity
Classification

Video
Captioning

Activity
Prediction

Actor-action
Segmentation

Temporal Activity
Localization

Other tasks: Video
Summarization



2. Video representations

In this chapter we consider video representation learning for 
action recognition. We analyze existing algorithms for their ability 
to capture intrinsic and extrinsic action properties, including 
appearance, motion, spatial and temporal extent.



Shallow action recognition
Spatio-temporal

Interest point detection
Space-time 

patch/trajectory
Space-time
descriptor

Followed by Bag-of-Words/Fisher vector and SVM



Motion is salient
Motion offers crucial clue where to attend in video



Flow trajectory descriptors

Wang et al. IJCV13



2D Appearance only
Pre-train on ImageNet, fine-tune on video concepts

Average pooling over multiple frames per video shot

Good for objects and scenes, so and so for actions

Snoek et al. TRECVID13



3D Appearance only
Extracts multiple features from both spatial and temporal 

dimensions by performing 3D convolutions

Need large amounts of data to learn filters

Ji et al. ICML10



2D vs 3D convolution
A) Applying 2D convolution on an image results in an image.

B) Applying 2D convolution on a video volume (multiple frames 
as multiple channels) also results in an image 

C) Applying 3D convolution on a video volume results in 
another volume, preserving short term temporal information 
of the input signal 

Tran et al. ICCV 15



2D Appearance and spatial
Models spatial extent of action mildly by separating stream 

for center crop and entire frame
Considers various temporal pooling schemes

Introduces Sports1M dataset
Karpathy & Fei-Fei. CVPR14



2D Appearance and motion
Learn spatial and temporal filters separately

Pre-train on ImageNet, fine-tune for actions
Fusion by averaging or SVM

Simonyan & Zisserman, NIPS14



2D Appearance, motion and spatial
Generalize ResNet for video 
Remove fully-connected layers

Feichtenhofer et al, NIPS16



Inflated 3D (appearance and motion)
Simply convert 2D classification models into 3D ConvNets. 

From 2D architecture, inflate all the filters and pooling 
kernels – effectively adding a temporal dimension

Square N x N filters become cubic: N x N x N

Carreira & Zisserman CVPR17



Two-in-one Stream
Appearance, motion and spatial into a single stream
Exploits feature modulation 
Better accuracy, with half the parameters
Particularly well suited for spatio-temporal action detection

Zhao & Snoek, CVPR19



Two-in-one Stream visualization

Modulated features focus more on moving actors. 

RGB image

Flow image Motion condition maps

RGB features before modulation

Features after modulation
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2D Appearance, motion and temporal
Key insight: exploit temporal order as soft label
Actions vary in appearance but order is preserved

Video-specific ranker parameters as representation
Similar actions à similar ranking parameters

Fernando et al. CVPR15



2D Appearance and temporal

LSTM models sequential memories in the long and short term
ConvNet-fc vectors as input, no spatial information encoded

Baccouche et al. ICANN10 / Donahue et al. CVPR15  / Ng et al. CVPR15

Time



2D Appearance, temporal, spatial

Look for best locations leading to correct action classification
Stays close to soft-Attention for image captioning [Xu et al. ICML15], 

Vectorizes attention and appearance, ignores the motion inside a video.

Sharma et al. NIPS15 / ICLR16



3. VideoLSTM
This chapter presents VideoLSTM. An LSTM able 
to model spatiotemporal dynamics of videos by

preserving 2D spatial structure of the frames over time
adding motion-based attention
enabling action localization from action class labels only

VideoLSTM convolves, attends and flows for action recognition.
Zhenyang Li, Kirill Gavrilyuk, Efstratios Gavves, Mihir Jain, and Cees Snoek. 

CVIU 2018



Convolutional (A)LSTM
Replace the fully connected multiplicative operations in 
an LSTM unit with convolutional operations

Generate attention by shallow ConvNet instead of MLP
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Convolutional ALSTM

Convolutional ALSTM preserves spatial dimensions over time



ALSTM
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Convolutional ALSTM
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Motion-based attention

∗∗∗∗

Attention	map	→

Flow	image	→

Prediction	→ “Tennis	swing” “Tennis	swing” “Tennis	swing”“Tennis	swing”

∗ ∗ ∗∗

⊙ ⊙ ⊙⊙

Video	frame	→

Motion information to infer the attention in each frame



Temporal smoothing



VideoLSTM vs ALSTM

VideoLSTM localizes much better, temporal smoothing helps
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Qualitative results



Qualitative results



Qualitative results



4. Video Time
Time-aware encoding of frame sequences in a video is a 
fundamental problem in video understanding. While many 
attempted to model time in videos, an explicit study on 
quantifying video time is missing. We describe three 
properties of video time, and formulate tasks able to 
quantify the associated properties. 

Ghodrati, Gavves & Snoek BMVC 18



Properties of Video Time
Temporal asymmetry

– There is a clear distinction between the forward and the 
backward arrow of time

Forward Backward



Arrow of time prediction
The task of distinguishing natural order and reverse order 

of frames, a binary classification task.
A conceptual, ultimate temporal task: Output is defined by 

order of the input, regardless of the input representation. 

Natural order (+)

Reverse order (-)
Binary 

classification +/-
Temporal 
modeling



Properties of Video Time
Temporal asymmetry

– There is a clear distinction between the forward and the 
backward arrow of time.

Temporal continuity
– Future observations are expected to be a smooth continuation of 

past observations

Continuous Non-continuous:
swapping two frames



Future frame selection 
In this task, we sample N frames from a video where the 

first N-1 frames are given but the last frame is missing.
The goal is to select the correct future frame, given a list of 
K choices from the same video.



Properties of Video Time
Temporal asymmetry

– There is a clear distinction between the forward and the 
backward arrow of time.

Temporal continuity
– Future observations are expected to be a smooth continuation of 

past observations

Temporal causality
– When we observe an event, we observe a chain of causes and 

then effects

ordered

action: Pretending to put something into something

shuffled



Action template classification
The task of action classification where classes are 
formulated as template-based textual descriptions e.g. 
Putting something into something

Putting something into something

Pretending to put something into something

Holding something behind something
.
.
.



Modern models
LS

TM

LS
TM

LS
TM

LS
TM

CNN 3D CNN

3D CNN

3D CNNCNNCNNCNN

3D convolutions learn spatiotemporal 
patterns within a video  

LSTMs learn transitions between 
subsequent states



Proposed model
Time-aligned dense net
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Proposed model
Time-aligned dense net
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Proposed model
Time-aligned dense net
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Proposed model
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Arrow of time prediction - Datasets
Pickup et al.

UCF 101



Arrow of time prediction - Results

chance

Sequential encoders like LSTM and ours better suited than C3D. 



Arrow of time prediction - tSNE



Arrow of time prediction – per class

Temporally causal classes easier?



Future frame selection - datasets
We divide the actions into three categories:

❏ Clear arrow →  actions with visible arrow of time e.g. 
bowling, diving, billiards, … (24 classes)

❏ Semi-clear arrow →  actions with semi-visible arrow of 
time e.g. archery, military march, … (17 classes)

❏ unclear arrow →  actions that arrow of time is not 
visible e.g. haircut, play flute, … (60 classes)



Future frame selection - results
Average over predictions from {0.4, 0.8, 1.3, 1.7, 2.5, 3.3, 4.2, 

5.0, 5.8, 6.7, 7.5, 8.3} seconds ahead

chance

Learning both spatial and temporal dependencies are necessary 



Action Template Classification - Dataset
Something-something dataset
174 template classes

Pretending to close something without closing it

closing something

Goyal et al. ICCV 17



Action Template Classification - Results

chance

Model should be able to parameterize the temporal conditional 
dependencies per time step freely

chance



Conclusions

Best video representations for actions are learned
Having sufficient examples available not obvious for actions
Things become worse for localized actions

VideoLSTM hardwires convolutions inside attention LSTM
Derives attention from what moves in video
Localization from a video-level action class label only

Video time representation open challenge



5. Video & Language
The common tactic to spatiotemporal video understanding 
is to track a human-specified box or to learn a deep 
classification network from a set of predefined action 
classes. In this Chapter we will present an alternative 
approach, that allows for spatiotemporal recognition from a 
natural language sentence as input, and show its potential 
for object tracking and action segmentation. 



Image understanding from sentence
Find object location in image based on language

“window upper right” “bottom left window”

ground truth
prediction

Hu et al. CVPR 2016



Object segmentation from a sentence
Image embedding – spatial feature map through CNN
Sentence embedding – final hidden state in LSTM

Fully convolutional classification – match input sentence to 
every location on the spatial grid and up-sample

Hu et al. ECCV 2016



I. Tracking

Tracking by Natural Language Specification. In CVPR 2017.

Efstratios GavvesRan TaoZhenyang Li Arnold SmeuldersCees Snoek



A long standing computer vision challenge

Object 
Tracking?



Conventional wisdom

Object 
Tracking?

Step 1: Set the boxStep 1: Specify the box SINT



Step 2: Start tracking SINT



Key contribution
Specify the target by language instead of box

“Track the little green person with the pointy ears and the beige robe”



Benefits of language
Tracking objects in multiple videos simultaneously
No ‘first-frame’ requirement, live monitoring across streams

“Man with blue pants”



Challenges
How to obtain a tight box around an object from text?

Text ambiguity vs object variance vs object invariance?

What happens if the description is no longer valid? 



Model I: Lingual specification only
LSTM encodes the text query

LSTM LSTM LSTM LSTM

“Little” “green” “person” “robe”
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Model I: Lingual specification only
LSTM encodes the text query

Dynamically generate filters from LSTM output

LSTM LSTM LSTM LSTM

“Little” “green” “person” “robe”
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Model I: Lingual specification only
LSTM encodes the text query

Dynamically generate filters from LSTM output

Convolve with input frame

LSTM LSTM LSTM LSTM

“Little” “green” “person” “robe”
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Model I: Lingual specification only
Tracking by repeated ‘detection’

“Little” “green” “person” “robe”
!" !# !$ !%

& =
0, …

, +



Tao et al. CVPR 2016

Model II: Lingual first, then visual
Use Model I for initialization, then track

! =
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Dynamic 
filters



Model III: Lingual & visual
Adapts the lingual specification over time
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Dynamic 
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Attention 
module



Augment tracking video with sentences
Tracking datasets: OTB100 and ImageNet Videos



Tracking datasets: OTB100 and ImageNet Videos
We add language description about the target in first frame

"left singer in white dress" "white car on the left" "woman in dark pants on left"
"woman in white next to the 
woman in dark pants"

Augment tracking video with sentences
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Model I: Lingual only

Model III: Lingual & visual
Model II: Lingual, then visualGirl2

Toy

Dragonbaby
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sorted by first frame accuracy

Model II and III profit from good 
initialization.

Model I: Lingual only

Model III: Lingual & visual
Model II: Lingual, then visual
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sorted by first frame accuracy

Hard to recover from poor 
initialization, then model I 
better choice.

Model II and III profit from good 
initialization.

Model I: Lingual only

Model III: Lingual & visual
Model II: Lingual, then visual



“The black and white dog”

Lingual only Lingual, then visual Lingual & visual



“White car on the left”

Lingual only Lingual, then visual Lingual & visual



“Girl in yellow shirt and purple pants”

Lingual only Lingual, then visual Lingual & visual



Track by language and box specification

Ground truth         Box specification        Language and box specification

”female skater in red"

Language helps against drift.



"people on the right next to a big tree"

Language helps against drift.

Track by language and box specification

Ground truth         Box specification        Language and box specification



II. Actions

Zhenyang LiKirill Gavrilyuk Amir Ghodrati Cees Snoek

Actor and Action Video Segmentation from a Sentence. In 
CVPR 2018.



Goal

Input video

“woman in purple dress running” 

“gray dog running on a leash during dog show”



Benefits of language
Distinguish fine-grained actors within same super-category

Identify actor and action instances 

Segment actors & actions outside pre-defined vocabulary



Different goal: recognize after learning from provided actor 
and action label pairs

Actor-action video segmentation

3782 videos, 7 actors, 8 actions 

Xu et al. CVPR15

Joint actor-action detection and segmentation in videos 
using single RGB and Flow frames as input

Kalogeiton et al. ICCV17



Augment action video with sentences

Two datasets extended with more than 7,500 natural language descriptions



Model

N x 512 x 512 x 3

I3D
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Video Encoder 
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I3D is pre-trained on Kinetics and ImageNet

Word2Vec is pre-trained on 
GoogleNews



Training
Training sample - video clip, sentence and binary segmentation mask

N x 512 x 512 x 3

furry white dog 
eating food 

from the floor

32 x 32
128 x 128 

512 x 512 
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pu

t Target



Loss
Loss per sample takes into account multiple resolutions

Logistic loss for per-pixel classification 



Evaluation metric
Intersection over Union

mAP 0.5:0.95: mean over precision for 
various IoU levels in range of [0.5:0.05:0.95]



Ablation: image or video?

For segmentation, video is more than just a set of independent frames

A2D 
Sentences



More ablation

Multi-resolution for better training

A2D 
Sentences

A2D 
Sentences

Simple 1D CNN outperforms LSTM



Comparison with image-baselines
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Li et al.

Hu et
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mAP 0.5:0.95 on A2D sentences (higher is better)
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Existing models without pre-training results in modest recognition.



Comparison with image-baselines
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Our model outperforms both baselines. 



Comparison with image-baselines
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Ours

Li et al.

Hu et
al.

mAP 0.5:0.95 on A2D sentences (higher is better)

Image-RGB
Video-RGB
Video-Flow

Incorporating flow in our video model further improves results.



Qualitative results: simple cases

“kid rolling over” “brown dog crawling on the ground”



Qualitative results: hard cases

“a man is climbing a rock”
“man standing on the left”



“man walking with a woman on the beach”

Qualitative results: failure cases

“woman walking with a man on the beach”



Qualitative comparison with baselines

“a black dog is walking on the left”

Hu et al. Li et al. Our model Groundtruth

“a car is rolling”

“cat climbing wall”



Segmentation from actor-action pairs
We use actor-action pairs from original A2D dataset as input

ball 
flying

adult 
jumping



Segmentation from actor-action pairs

Our method outperforms the state-of-the-art in most cases.

ball

adult

flying 

jumping

ball flying

adult jumping



Conclusion
New type of human-machine interaction for video understanding.

More robust tracking and segmentation of actors and actions. 

Representations enable novel application scenarios.



Thank you!


