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Interaction of people and objects under a certain scene

Examples
• Personal events: marriage proposal, grooming an animal
• Traffic events: accident, traffic jam
• Security events: breaking a lock, leaving a bag unattended

What is an event?

Object

Event

Actio
nScene

People

Event: Winning a race without a vehicle
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Large variation in examples (semantic variance)
• Depending on the context, may involve various objects, actions and scenes

Limited number of training examples
• More specific than individual object, action, and scenes

Why event recognition is hard?

Event: Feeding an animal
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Neither shallow BoW nor deep learned representations fit well
• BoW are not discriminative enough to handle the large variations
• Not enough training examples to train a deep neural network

SOTA rely on pre-trained semantic encoders to represent videos

Video representations for event recognition

Non-semantic representation

Event:
Making a sandwich

Semantic representation
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Video representations for event recognition

Early workNon-semantic

Semantic

Handcrafted Learned

Research trend
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Aggregation of handcrafted descriptors over video

Non-semantic representation (handcrafted)

[Jiang et al., TRECVID 2010] [Natarajan et al., CVPR 2012] [Wang et al., ICCV 2013] and many others

Decoding video
Extracting 
descriptors

Quantizing 
descriptors

Appearance
- SIFT, GIST, 

…
Motion
- HOF, MBH, 

…

Bag-of-words
VLAD
Fisher vector
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Aggregation of CNN descriptors over video

More effective and efficient compared to the handcrafted 

Non-semantic representation (learned)

[Xu et al., CVPR 2015] [Nagel et al., BMVC 2015]

Decoding video
Extracting
CNN 
descriptors

Video pooling

Trained on 
images
VGG - Inception

Averaging
Fisher vector
VLAD
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Video representations for event recognition

Non-semantic

Semantic

Handcrafted Learned
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Handcraft a vocabulary of concept detectors

Semantic representation (handcrafted)
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The vocabulary is created in three steps:
1. Identifying the concepts to be included in the vocabulary
2. Providing training examples per concept
3. Training concept classifiers

Involves lots of annotation effort
• To identify which concepts to include
• To provide training examples per concept

Handcrafting concept vocabulary
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Key questions
• How many concepts to include in the vocabulary?
• How accurate should the concept detectors be?
• What concept types to include in the vocabulary?
• Which concepts to include in the vocabulary?
• ...

Handcrafted vocabulary

A. Habibian, K. van de Sande, and C. Snoek, ICMR’13
A. Habibian and C. Snoek, CVIU’14
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Impact of concept detector accuracies on event recognition
Impose noise on concept detector predictions

Quantity vs Quality
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Impact of concept detector accuracies on event recognition
Impose noise on concept detector predictions

Make the vocabulary larger rather than more accurate

Quantity vs Quality
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Comprehensive set of concepts from various types are needed

It requires lots of annotation effort …

Conclusion



15

Expanding the labels by logical operations
• AND, OR, …

Label composition trick

A. Habibian, T. Mensink, and C. Snoek, ICMR’14
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Expanding the labels by logical operations
• AND, OR, …

Label composition trick

…
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Expanding the vocabulary for free

Composite concepts can be easier to detect
• boat-AND-sea
• bear-AND-cage
• man-OR-woman

Composite concepts can be more indicative of  the event
• bike-AND-ride for attempting a bike trick

Motivation
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For a vocabulary of n concepts, there are Bn disjoint compositions
• Bell number: 

• Not all of them are useful

Which concepts should be composed together?
• NP-hard problem, equivalent to set-partitioning
• Approximated by a greedy search algorithm

Learning composite concepts
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Top ranked videos for flash mob gathering
Most dominant concepts in the video representation

Qualitative results



20

More comprehensive vocabulary by composing the concepts

Still grounded on the handcrafted concepts …

Conclusion
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Video representations for event recognition

Non-semantic

Semantic

Handcrafted Learned
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Discovering concepts from the web

[Wu et. al. CVPR’14] [Chen et al., ICMR’14]
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Learn the mutual underlying subspace between videos and descriptions

Video2Vec embedding

A. Habibian, T. Mensink, and C. Snoek, PAMI, In press

Videos

…

A woman folds and packages a scarf 
she has made.

A woman points out bones on a skeleton 
for lab practical for an anatomy class.

A mother at a fountain tries to get 
her daughter to step on the water 
jets. …

Descriptions

Semantic space
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Learn a compact representation by which the input could be 
reconstructed
• Codes as data representation

Autoencoder for visual data:

Autoencoder for textual data:

Autoencoder

Encoder

C
odes Decoder

Crazy guy doing 
insane stunts on 
bike.

Encoder

C
odes Decoder

Crazy guy doing 
insane stunts on 
bike.
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Reconstruct the other view of data
• Reconstruct the textual view from visual view

• Reconstruct the visual view from textual view:

Video2Vec embedding

Encoder

C
odes Decoder

Crazy guy doing 
insane stunts on 
bike.

C
odes Decoder

Crazy guy doing 
insane stunts on 
bike.

Encoder
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Reconstruct the other view of data
• Reconstruct the textual view from visual view

• W: encodes visual features into codes

• A: decodes codes into textual features

Video2Vec embedding

Encoder

C
odes Decoder

Crazy guy doing 
insane stunts on 
bike.

𝑥" 𝑊 𝐴
𝑠"

𝑦"

ℒ 𝑦, 𝑦) = 	 𝑦" − 𝐴	𝑊	𝑥" -
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Train a different encoder to encode every video channel
• Appearance, Motion, and audio

Share the codes to enforce the common structures across modalities
• Acts as a regularizer

Multimodal encoding

C
odes Decoder

Crazy guy doing 
insane stunts on 
bike.

Encoder
motion

Audio

Appearance

Motion
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Visualizing the decoder (A) as A x AT

The multimodal encoder better learns the semantic relations

Multimodal encoding

Unimodal encoder
(Audio)

Unimodal encoder 
(Motion)

Unimodal encoder 
(Appearance)

Multimodal encoder
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Joint encoding of multiple modalities lead to a better representation

Impact of multimodal encoding
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Autoencoders rely on ℓ- loss to measure reconstruction error:
ℒ 𝑦, 𝑦) = 	 𝑦 − 𝑦) -

The error in reconstructing all of the words are treated equally

We replace the ℓ- loss with:
ℒ 𝑦, 𝑦) = 	 	𝐻0	(𝑦 − 𝑦)) -

Ht is a diagonal matrix determining the importance of each word per 
task

Task specific decoding
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Middle: standard decoder

Bottom: task specific decoder

Task specific decoding
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Event specific decoding lead to a better representation
• For the both unimodal and multimodal encoders

Impact of event specific decoding

Zero-shot event recognition
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1. Train the embedding on a collection of videos and their descriptions
− Videos and their captions downloaded from YouTube

2. Use the trained embedding to encode event videos

3. Train and use the event classifier on the encoded representations
− SVM

Event recognition with video examples
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Event recognition without video examples

Term 
extraction

Term Vector

Video2Vec
Term Vector

Text

Matching

Test videos

Event description
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Applications
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Represent the all modalities in a mutual semantic space

Application 1: Cross-modal retrieval

A. Habibian, T. Mensink, and C. Snoek, ICMR’15

Speech
TextImages

Videos
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Application 1: Cross-modal retrieval

A. Habibian and C. Snoek, MM’13
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Application 1: Cross-modal retrieval

A. Habibian and C. Snoek, MM’13
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Efficiency
• Representing videos by a compact set of concepts 

Few exemplars
• Transfer learning from vocabulary training examples

Recounting
• Interpretable video representation

Application 2: On-the-fly event search

A. Habibian, M. Mazloom, and C. Snoek, ICMR’14
M. Mazloom, A. Habibian, and C.Snoek, MM’13
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Application 2: On-the-fly event search
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Application 2: On-the-fly event search
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Application 2: On-the-fly event search
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Localizing the event over time by following its concepts
Summarizing long videos, i.e. GoPro footages

Application 3: Video summarization

M.Mazloom, A. Habibian and C. Snoek, ICMR’15

Changing a vehicle tire
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habibian.a.h@gmail.com

Thanks !


