## Tracking by learning

Arnold W.M. Smeulders with Dung Chu

for SINT with Ran Tao and Efstratis Gavves

## Tracking

Online tracking is to *determine the location of one target in video* starting from a bounding box in the first frame.

When conceived as an instant learning problem, the task is to discriminate object from background on the basis of N=1 sample (in the first frame) and N=k samples more (as long as the tracking is successful over k+1 frames).

So it is a hard and complex machine learning problem.

## Tracking

Online tracking is to *determine the location of one target in video* starting from a bounding box in the first frame.

They consist of:

- a module observing the features of the image.
- a module selecting the actual motion.

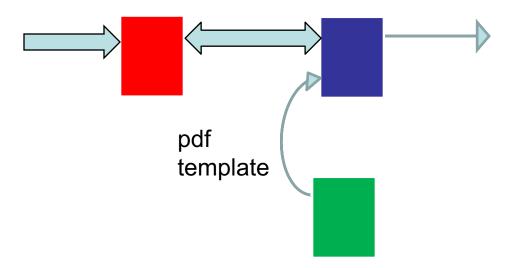
a module holding the internal representation of the object.

a module updating the representation of the object.

## The simplest tracker: NCC

The oldest and still good(!) non-discriminative tracker.

- Intensity values in the candidate box.
- Direct target matching by Normalized Cross-Correlation.
- Intensity values in the initial target box as template.
  - No updating of the target.

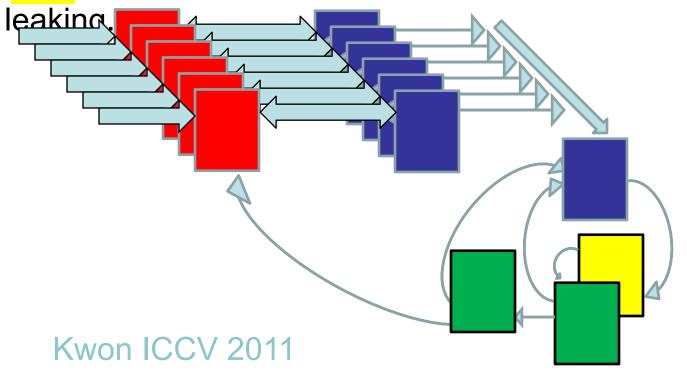


#### 1970? Briechle SPIE 2001

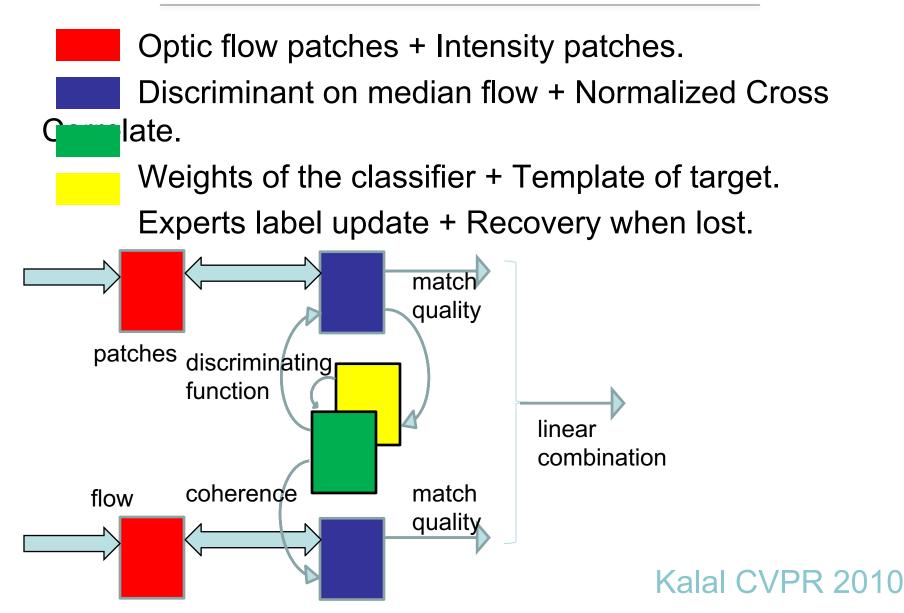
## A good tracker: TST

Tracking by Sampling Trackers is the best non-discriminative.

- HIS-color edges of many different trackers.
- Best match in image, followed by best state.
- Trackers store eigen images. State stores x, s, score.
- Sparse incremental PCA image representation with



## A good tracker: TLD



### **Discriminative trackers**

In discriminative trackers, the emphasis on learning the current distinction between object and background.

We discuss the first: the Foreground – Background tracker.

### **Discriminative Trackers**

#### Minor viewpoint change



#### Severe viewpoint change



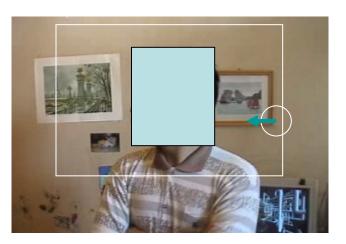




#### Nguyen IJCV 2006

## **Discriminative Trackers**

The hole in the background leaves the appearance of the object entirely free: The object may change abruptly in pose.

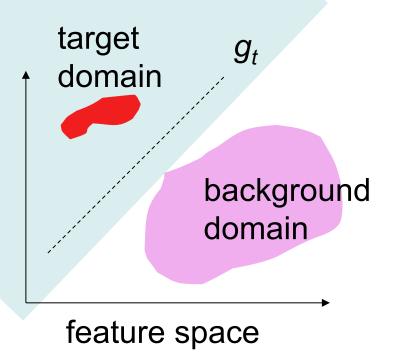


The background varies slower: Background is better predictable.

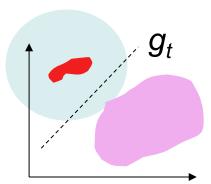
General scheme: Get foreground and background patches + Learn a classifier + Classify patches from new image.

## **Discriminative Tracker: FBT**

Dynamic discrimination of the object from its background while maximizing the discriminant score of the target region.



Or even better:



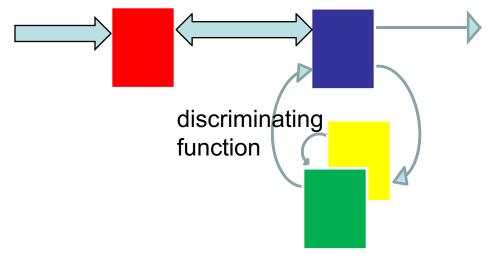
## **Discriminative Tracker: FBT**

SURF texture samples from target / background box.

Trains a linear discriminant classifier.

Classifier is foreground/background model (in feature ce).

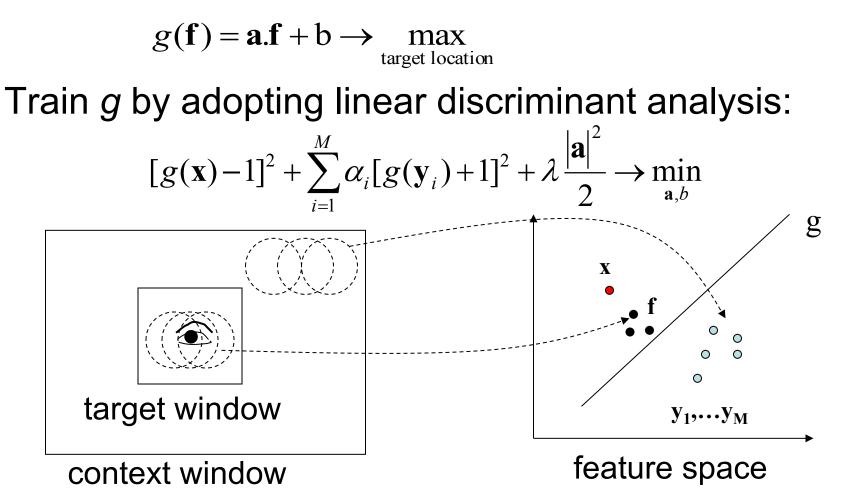
Updated by a leaking memory on the training data.



#### Nguyen IJCV 2006, Chu 2012

## Foreground-Background Classifier

**Discriminant** function



## Foreground-Background Classifier

The solution is obtained in closed, incremental form:

$$\mathbf{a} \propto [\lambda \mathbf{I} + \mathbf{B}]^{-1}[\mathbf{x} - \overline{\mathbf{y}}]$$

The weighted mean vector of background patterns:

$$\overline{\mathbf{y}} = \sum_{i=1}^{M} \alpha_i \mathbf{y}_i$$

The weighted covariance matrix:

$$\mathbf{B} = \sum_{i=1}^{M} \alpha_i [\mathbf{y}_i - \overline{\mathbf{y}}] [\mathbf{y}_i - \overline{\mathbf{y}}]^T$$

Mean and covariance can be updated incrementally.

## Foreground-Background Updating

The foreground template is updated in every frame:

$$\mathbf{x} = (1 - \gamma) \mathbf{x}_{prev} + \gamma \mathbf{f}_{optimal}$$

New patterns are added to the background patterns. Background patterns are summed with leaking coefficients  $\alpha_i$ . New and old patterns predict mean y and cov **B** incrementally.

### **FBT Results**

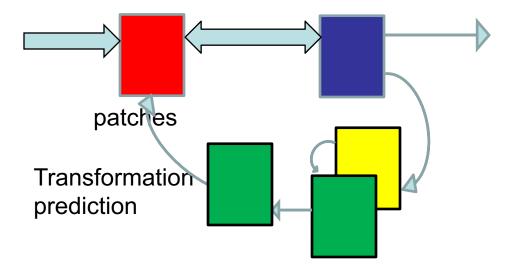


#### Structured SVM Tracker

## STRuctured output tracking

Windows by Haar features with 2 scales.

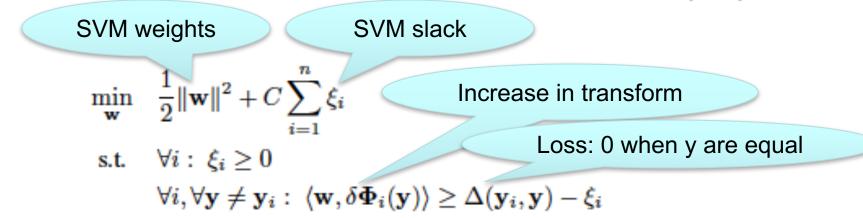
- Structured SVM by {appearance, translation}, no labels.
- Structured constraints + Transformation prediction.
  - Update the constraints to stay at current **x**.



Hare ICCV 2011

## STRuctured output tracking

In STR the output of the classifier is the transform directly: what is the effort to go from **x** to **y** ( $\Delta$  x,  $\Delta$  appearance,  $\Delta$ ...)? The objective function with a (non)linear kernel  $\Phi(x, y)$  is:



Can be rewritten into the online version:

Hare

$$\max_{\boldsymbol{\beta}} \quad -\sum_{i,\mathbf{y}} \Delta(\mathbf{y}, \mathbf{y}_i) \beta_i^{\mathbf{y}} - \frac{1}{2} \sum_{i,\mathbf{y},j,\bar{\mathbf{y}}} \beta_i^{\mathbf{y}} \beta_j^{\bar{\mathbf{y}}} \langle \Phi(\mathbf{x}_i, \mathbf{y}), \Phi(\mathbf{x}_j, \bar{\mathbf{y}}) \rangle$$
  
s.t.  $\forall i, \forall \mathbf{y} : \beta_i^{\mathbf{y}} \leq \delta(\mathbf{y}, \mathbf{y}_i) C$   
 $\forall i : \sum_{\mathbf{y}} \beta_i^{\mathbf{y}} = 0$   
|CCV 2011

## STRuctured updating

The loss function is based on the overlap score:

$$\Delta(\mathbf{y}, \bar{\mathbf{y}}) = 1 - s_{\mathbf{p}_t}^o(\mathbf{y}, \bar{\mathbf{y}}),$$

Updating is by inserting the displacement as a positive support vector and the hardest loss as a negative.

Older support vectors are removed at random when their loss functions shows too big a deviation.

Existing support vectors are reprocessed to update their weights given the current state.

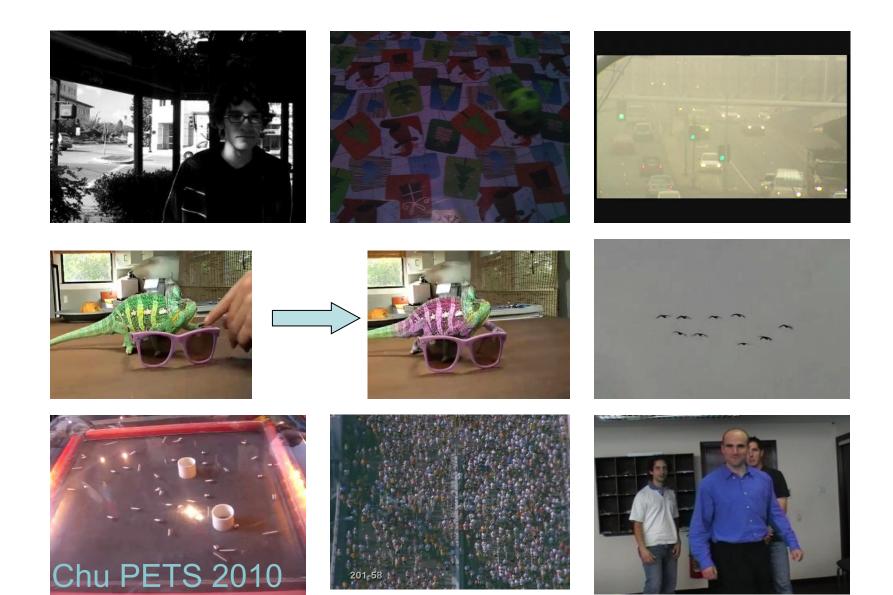
Hare ICCV 2011

#### **Experimental results 2014**

ALOV300++ dataset

Smeulders Dung et al PAMI 2014

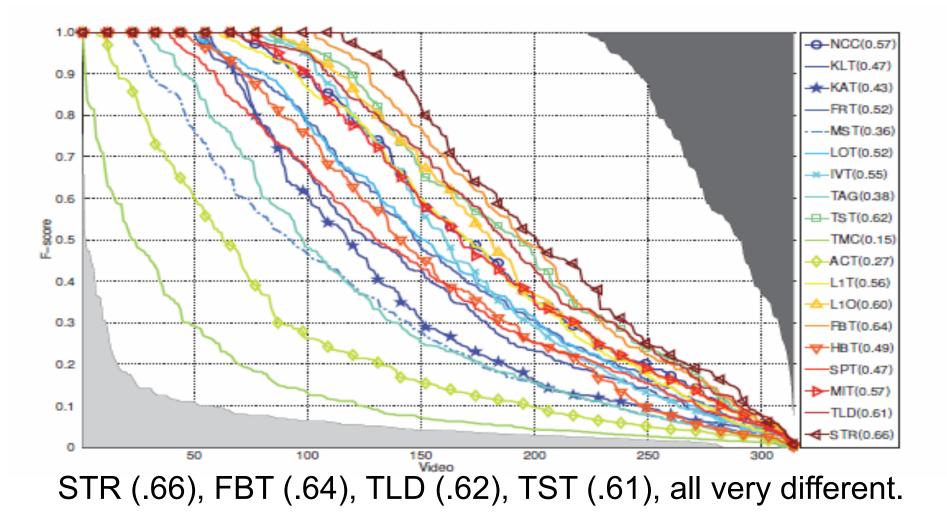
### 13 Hard Cases for Tracking



## **19 Assorted Trackers**

|     |                                      |     | 40-00 |
|-----|--------------------------------------|-----|-------|
| 1.  | Normalised cross correlation         | NCC | 1970? |
| 2.  | Lucas Kanade tracker                 | LKT | 1984  |
| 3.  | Kalman appearance prediction tracker | KAT | 2004  |
| 4.  | Fragments-based tracker              | FRT | 2006  |
| 5.  | Mean shift tracker                   | MST | 2000  |
| 6.  | Locally orderless tracker            | LOT | 2012  |
| 7.  | Incremental visual tracker           | IVT | 2008  |
| 8.  | Tracking on the affine group         | TAG | 2009  |
| 9.  | Tracking by sampling trackers        | TST | 2011  |
| 10. | Tracking by Monte Carlo sampling     | TMC | 2009  |
| 11. | Adaptive Coupled-layer Tracking      | ACT | 2011  |
| 12. | L1-minimization Tracker              | L1T | 2009  |
| 13. | L1-minimization with occlusion       | L10 | 2011  |
| 14. | Foreground background tracker        | FBT | 2006  |
| 15. | Hough-based tracking                 | HBT | 2011  |
| 16. | Super pixel tracking                 | SPT | 2011  |
| 17. | Multiple instance learning tracking  | MIT | 2009  |
| 18. | Tracking, learning and detection     | TLD | 2010  |
| 19. | Structured output tracking           | STR | 2011  |
|     |                                      |     |       |

### Survival curves by 2014



Smeulders Dung et al PAMI 2014

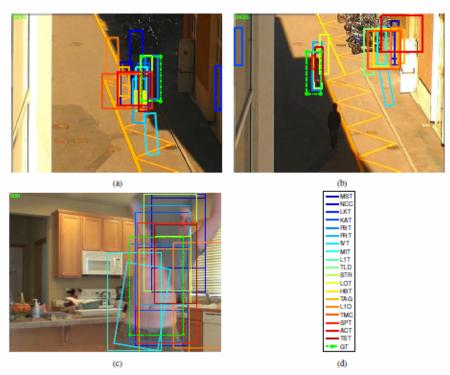
## Very hard



### On shadows

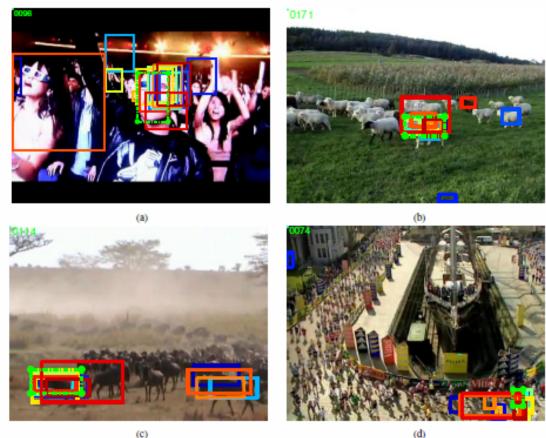
The effect of shadows.

Heavy shadow has an impact almost for all.



FBT (.73) performs best.

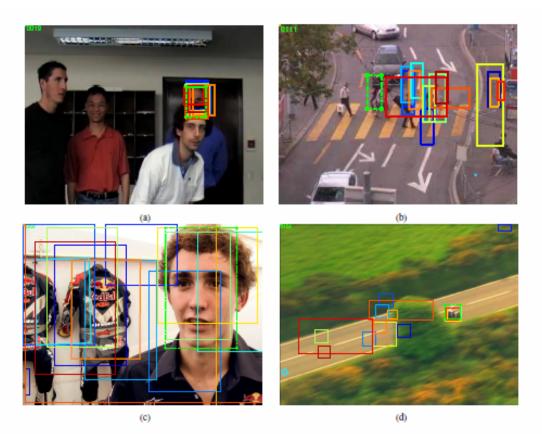
#### On clutter



(C)

Success is better than expected even if very hard.

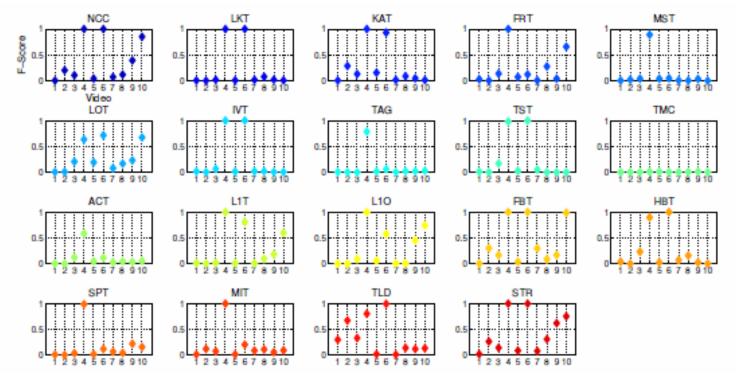
### On occlusion



STR, FBT, and TLD are best here. Light occlusion is approximately solved. Full occlusion is still hard for most.

## On long videos

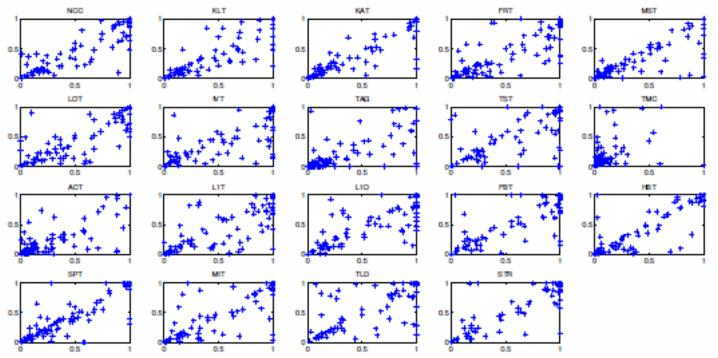
#### The F-score on ten 1 – 2 minute videos



STR, FBT, NCC (no updating!), TLD perform well (!). TLD excels in sequence 1 which is hard.

## On stability of the initial box

F-scores of 20% right shift (y-axis) vs original (x-axis)



Overall loss of .05 %. STR has a small loss.

## Outstanding results by Grubs

TABLE III: The list of outstanding cases resulted from the Grubbs' outlier test and with  $F \ge 0.5$ .

| Sequence | Tracker | Sequence | Tracker | Sequence | Tracker | Sequence | Tracker |
|----------|---------|----------|---------|----------|---------|----------|---------|
| 0112     | TLD     | 0411     | ACT     | 1102     | TLD     | 1203     | MIT     |
| 0115     | STR     | 0510     | L1T     | 1103     | HBT     | 1206     | STR     |
| 0116     | KAT     | 0512     | STR     | 1104     | TLD     | 1210     | TLD     |
| 0122     | TLD     | 0601     | STR     | 1107     | HBT     | 1217     | TLD     |
| 0203     | FBT     | 0611     | MST     | 1112     | STR     | 1218     | TLD     |
| 0301     | L1T     | 0705     | TLD     | 1116     | TLD     | 1221     | TLD     |
| 0305     | L1T     | 0901     | HBT     | 1119     | TLD     | 1303     | TLD     |
| 0312     | L1T     | 0916     | STR     | 1128     | TLD     | 1402     | TLD     |
| 0314     | KAT     | 0925     | STR     | 1129     | FBT     | 1409     | STR     |
| 0404     | FBT     | 1020     | FBT     | 1134     | FRT     |          |         |

Many excel in 1 video. (Favorable selection.) TLD excels in camera motion, occlusion. FBT in target appearance, light.



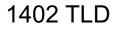
0916 STR

#### 0601 STR

#### 1107 SPT HBT



0404 FBT



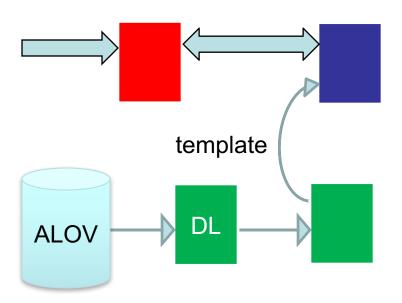
#### Siamese trackers

Tao, Gavves, Smeulders CVPR 2016

## Siamese instance search tracking

Observation: updating ruins most trackers. By learning the *general* variance in appearance *off-line*, can we avoid updating?

In other words, can we avoid the temporal aspect?



Yes we can:

Reinstall this primitive NCC-scheme.

+ Deep learning general variance.

## Siamese instance search tracking

Yes compare with original No update online No geometric matching No combination of trackers No motion model



Initial patch

*m*(candidates, original) predicted

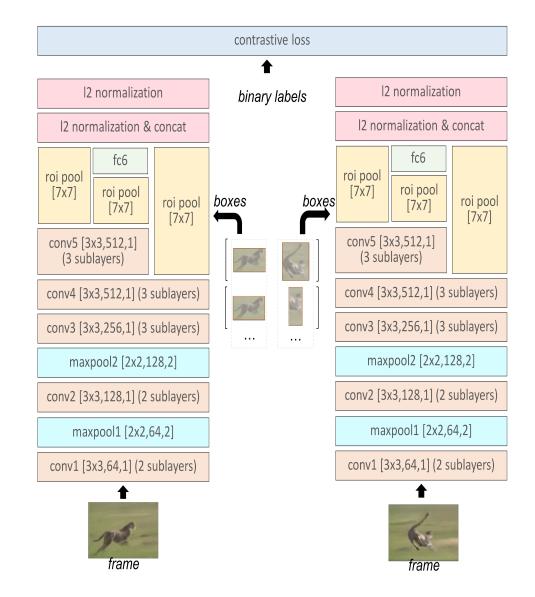
predict

patches

Learn the general variations *m*(.) of object appearances offline in a Siamese network on pairs of examples.



## Siamese learning m(.)



Contrastive loss.

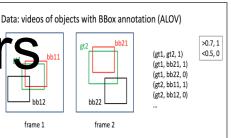
Use outputs of multiple layers to be robust in many situations.

Few max pooling to improve localization accuracy.

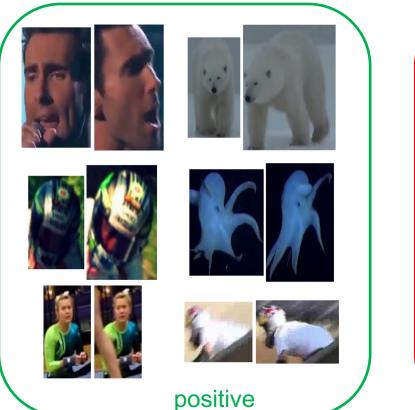
Pretrained ImageNet.

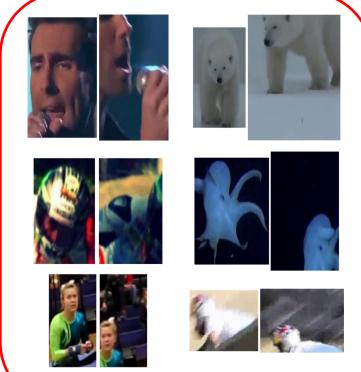
Insert correct / incorrect pairs.

# Siamese training pairs

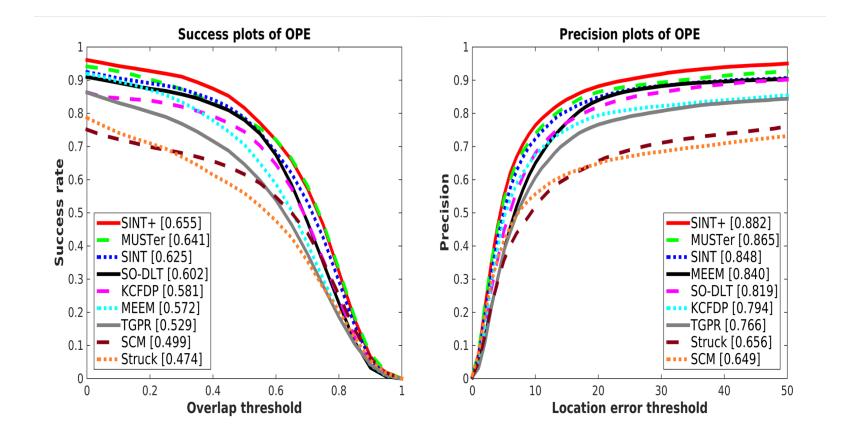


60,000 pairs of frames for training,2,000 pairs for validation128 pairs of boxes per pair of frames





negative



SINT+: adaptive sampling range [Want et al, ICCV15] & optical flow to remove motion inconsistent samples Results on [OTB50 Wu et al, CVPR13]



Can handle various types of appearance variations

The performance on subsequent frames will not be affected by the mistake made on the current frame.

# Failure cases: confusing objects



#### large occlusions



|            | MEEM [56] | MUSTer [18] | SINT |
|------------|-----------|-------------|------|
| Fishing    | 4.3       | 11.2        | 53.7 |
| Rally      | 20.4      | 27.5        | 53.4 |
| BirdAttack | 40.7      | 50.2        | 66.7 |
| Soccer     | 36.9      | 48.0        | 72.5 |
| GD         | 13.8      | 34.9        | 35.8 |
| Dancing    | 60.3      | 54.7        | 66.8 |
| mean       | 29.4      | 37.8        | 58.1 |



### SINT results: target reenters



## The hardness of tracking

Tracking aims to learn a target from the first few pictures; the target and the background may be dynamic in appearance, with unpredicted motion, and in difficult scenes.

Trackers tend to be under-evaluated, they tend to specialize in certain types of conditions.

Most recent trackers have learned from the oldies. We have found no definitive strategy yet, apart from *simplicity*, holding back on *updating*, apply *off-line learning* where possible.