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Recap from Day 2

Convolutional Networks are optimal for images
U Parameter sharing
O Much cheaper
O Much faster
[ Better local invariances

Several possible Convnet architectures possible
O AlexNet/VGGNet
L ResNet
0 Google Inception V1-4

Recurrent networks for modelling sequences



Standard inference

N-way classification




Standard inference

N-way classification

How popular will this movie be tn

. IMD®B?
Regression




Standard inference

N-way classification

who Ls older?

Regression

Ranking




IMDB?

car?  Plane?
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They all make “single value” predictions
Do all our machine learning tasks




Beyond “single value” predictions?

Do all our machine learning tasks Dogt  cat  Biker Can  Plane
boil to “single value” predictions? © O O O
Q. Q O

Are there tasks where outputs
are somehow correlated?

Is there some structure
in this output correlations? IMDE?

How can we predict such structures?
O Structured prediction







Object detection

Predict a box around an object

Images

O Spatial location
O b(ounding) box

Videos

O Spatio-temporal location
0 bbox@t, bbox@t+1, ...




Object segmentation

;o

Image Class map Instance map Part map Part map (high level




Optical flow & motion estimation




Depth estimation

Ours stereo Ours mono

Godard et al., Unsupervised Monocular Depth Estimation with Left-Right Consistency, 2016



Normals and reflectance estimation

Output

Input Image



Structured prediction

Prediction goes beyond asking for “single values”
Outputs are complex and output dimensions correlated
Output dimensions have latent structure

Can we make deep networks to return structured
predictions?




Structured prediction

Prediction goes beyond asking for “single values”
Outputs are complex and output dimensions correlated
Output dimensions have latent structure

Can we make deep networks to return structured
predictions?




Iction

Convnets for structured pred




Sliding window on feature maps

Selective Search Object Proposals [Uijlings2013]

SPPnet [He2014]
Fast R-CNN [Girshick2015]
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Fast R-CNN: Steps

Process the whole image up to convd
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Fast R-CNN: Steps

Process the whole image up to convd

Compute possible locations for objects
L some correct, most wrong

Given single location = ROI pooling module extracts fixed
length feature

| AUOD
€ AUOD
¥ AUOD
G AUOD

=

Z AUOD

Always 4x4 no
matter the size
of candidate
location

Conv 5 feature map



Fast R-CNN: Steps

Process the whole image up to convd

Compute possible locations for objects
L some correct, most wrong

Given single location = ROI pooling module extracts fixed
length feature

ROI Pooling
Module
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Always 4x4 no
matter the size
of candidate
location

Conv 5 feature map



Fast R-CNN: Steps

Process the whole image up to convd

Compute possible locations for objects
L some correct, most wrong

Given single location = ROI pooling module
extracts fixed length feature

ROI Pooling
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Always 4x4 no
matter the size
of candidate
location

Conv 5 feature map



Fast R-CNN: Steps

Process the whole image up to convd
Compute possible locations for objects

L some correct, most wrong

Given single location = ROI pooling module

extracts fixed length feature

Car/dog/bicycle
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Conv 5 feature map

New box
coordinates
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Always 4x4 no
matter the size
of candidate
location



Divide feature map in TxT cells
[ Cell size changes depending on the size of the candidate location

Always 3x3 no

| o | o matter the size of
candidate location
y
1
| | ] \




Some results




Fast R-CNN

Reuse convolutions for different candidate boxes
0 Compute feature maps only once
Region-of-Interest pooling

O Define stride relatively - box width divided by predefined
number of “poolings™ T

O Fixed length vector
End-to-end training!
(Very) Accurate object detection
(Very) Faster

4 Less than a second per image
External box proposals needed




Faster R-CNN [Girshick20106]

Fast R-CNN

 external candidate locations  classifier

Faster R-CNN ' pooling
Z

O deep network proposes candidate

Slide the feature map pp/

O k& anchor boxes per slide

Region Proposal Network
| 2kscores | | 4kcoordinates | <mm  Fanchorboxes feature maps

cls layer \ ’ reg layer

| 256-d

intermediate layer

conv layers /

t Z

N Figure 2: Faster R-CNN is a single, unified network
sliding window . .
: for object detection. The RPN module serves as the
conv feature map ‘ ‘attention” of this unified network.

Region Proposal Network



Going Fully Convolutional

[LongCVPR2014]

Image larger than network input
U slide the network

Is this pixel a camel?
[l Yes! [ No!
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Going Fully Convolutional

[LongCVPR2014]

Image larger than network input
U slide the network

Is this pixel a camel?
[l Yes! [ No!

’ .




Fully Convolutional Networks

[LongCVPR2014]
Connect intermediate layers to output

32x upsampled 2x upsampled 16x upsampled 2x upsampled 8x upsampled
prediction (FCN-32s)  prediction  prediction (FCN-16s)  prediction prediction (FCN-8s)

image pooll pool2 pool3 pool4 pool5 pool4

prediction

pool3
prediction

Figure 3. Our DAG nets learn to combine coarse, high layer information with fine, low layer information. Layers are shown as grids that
reveal relative spatial coarseness. Only pooling and prediction layers are shown; intermediate convolution layers (including our converted
fully connected layers) are omitted. Solid line (FCN-32s): Our single-stream net, described in Section 4.1, upsamples stride 32 predictions
back to pixels in a single step. Dashed line (FCN-16s): Combining predictions from both the final layer and the pool4 layer, at stride
16, lets our net predict finer details, while retaining high-level semantic information. Dotted line (FCN-8s): Additional predictions from
pool3, at stride 8, provide further precision.



Fully Convolutional Networks

Output is too coarse

O Image Size 500x500, Alexnet Input Size: 227x227 - Output:
10x10

How to obtain dense predictions?

Upconvolution

O Other names: deconvolution, transposed convolution,
fractionally-strided convolutions




Deconvolutional modules

Output

Image —

Convolution Upconvolution Upconvolution
No padding, no strides No padding, no strides Padding, strides

https://github.com/vdumoulin/conv_arithmetic



Upconvolutio

7

2X

Coarse 2 Fine Output

Small loss generated

14x14

2X

Upconvolution

Large loss generated
probablllty much higher than ground truth)

FI. 0 Ground truth pixel
F labels
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Structured losses
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Deep ConvNets with CRF loss

[Chen, Papandreou 2016]

Segmentation map is good but not pixel-precise
4 Details around boundaries are lost

Cast fully convolutional outputs as unary potentials
Consider pairwise potentials between output dimensions




Deep ConvNets with CRF loss

[Chen, Papandreou 2016]

Input

Aeroplane
Coarse Score map
Deep
Convolutional |~
—p — -
Neural el
Network
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Bi-linear Interpolation

Final Output Fully Connected CRF




Deep ConvNets with CRF loss

[Chen, Papandreou 2016]

Segmentation map is good but not pixel-precise
— Details around boundaries are lost

Cast fully convolutional outputs as unary potentials
Consider pairwise potentials between output dimensions
Include Fully Connected CRF loss to refine segmentation

?(X) = 20;(x;) + Zeij(xTi»xj)

Total loss  Lnary loss Patrwise Loss

9:7 (%1, %)~ wy exp (—a|Pi — Pj|2 - Bl — Ij|2) + w, exp(—Y|p; — Pj|2)



Examples




Multi-task learning

The total loss is the summation of the per task losses

The per task loss relies on the common weights (VGGnet)
and the weights specialized for the task

Ltotal — z Ltask (Hcommon» Qtask) + R(Qtask)

task
One training image might contain specific only annotations
O Only a particular task is “run” for that image

Gradients per image are computed for tasks available for
the image only




Ubernet [Kokkinos2016]

Input Image

13

L3




One image 2> Several tasks

Per image we can predict, boundaries, segmentation,
detection, ...
O Why separately?

Solve multiple tasks simultaneously
One task might help learn another better
One task might have more annotations

In real applications we don’t want 7 VGGnets
4 1 for boundaries, 1 for normals, 1 for saliency, ...




One image 2> Several tasks

Boundaries

’

Semantic Segmentation Semantic Boundaries
Human Parts Detection
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Discovering structure




Standard Autoencoder

Z xg(h(x)) Output: reconstructionx
d
|x —

%\\\

Error L

_—  ——

Input: x



Standard Autoencoder

The latent space should have fewer dimensions than input
1 Undercomplete representation
O Bottleneck architecture

Otherwise (overcomplete) autoencoder might learn the
identity function

Wxl = x=x = L=0
O Assuming no regularization
Q Often in practice still works though

Also, if z = Wx + b (linear) autoencoder learns same
subspace as PCA



Denoising Autoencoder

Output: reconstruction x

Error L
Encoder
Corrupted input: X §<« I M S
Noise &: q(flx, E) -_-.==:;Z:.;;;EE;;;;;;EEEEQEE:::::::: —————————

Input: x



Denoising Autoencoder

The network does not overlearn the data
O Can even use overcomplete latent spaces
Model forced to learn more intelligent, robust
representations

O Learn to ignore noise or trivial solutions(identity)
0 Focus on “underlying” data generation process

DAE Increasing noise

HEERNE SEeEs o e
corruption)

on B (0%, 10%,20%, 50% c




Variational Autoencoder

We want to model the data distribution

n(x) = f po (2o (x2)dz

Posterior pg(z|x) is intractable for complicated likelihood
functions py(x|z), e.g. a neural network = p(x) is also
Intractable

Introduce an inference machine q,(z|x) (e.g. another

neural network) that learns to approximate the
posterior py (z|x)

d Since we cannot know py(z|x) define a variational lower bound
to optimize instead

L(6,9,x) = =Dk (9, 2|0)Ipe (2)) + Eq,,z1x) (10g po (x]2))

Regularization term Reconstruction term



Examples
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Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent

space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-

dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative

pe(x|z) with the learned parameters 6.



Generative Adversarial Networks

Composed of two successive networks
O Generator network (like upper half of autoencoders)
O Discriminator network (like a convent)

Learning
O Sample “noise” vectors z
U Per z the generator produces a sample x

O Make a batch where half samples are real,
half are the generated ones

O The discriminator needs to predict what is real
and what is fake




Generative Adversarial Networks

Dhmﬂmii:;ﬁizg!g%f%%ggi;:§>§\

Noise z



“Police vs Thief”

Generator and discriminator networks optimized together
O The generator (thief) tries to fool the discriminator
O The discriminator (police) tries to not get fooled by the generator

Mathematically

mGjn max V(G,D) =Exp,.,.c)108D(x) + E;p_(z)log(1 — D(G(2)



Examples

Bedrooms
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Image “arithmetics”

smiling neutral neutral

smiling man
woman woman man ’

|

man man woman
with glasses without glasses without glasses

woman with glasses



Take away message

Deep Learning is good not only for classifying things

Structured prediction is also possible

Multi-task structure prediction allows for unified networks

Discovering structure in data is also possible



Thank you!
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