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Abstract

Computer vision has been revolutionized since the year 2000. 
Learning from examples is now leading. None of the methods for 
learning in computer vision is older than 15 years. In the course 
we will discuss methods of computing, invariance, and learning to 
distinguish objects. 

The course is supplemented with practical work and is completed 
with an assignment.



Where and When
Wednesday 22nd feb to Tuesday 29th of feb
Lectures 09:30-12:15 C3.163
Lunch 12:15-13:30 on your own
Lab 13:30-17:00 B1.24.B



Lab
Lab Wednesday Introduction vision by learning
Lab Thursday Visualisation of filters and codes
Lab Friday Style transfer learning
Lab Monday Invariance and data augmentation
Lab Tuesday Competition: bake your own

Each team of 2 persons hands in the Python notebooks per 
assignment completed with code and answers. 

Deadline: March 24th, 2017
Email to: p.s.m.mettes@uva.nl



Overview Day 1

1. Introduction, types of concepts, tasks, knowledge as invariance
2. Observables, color, space, time, texture, Gaussian family
3. Invariance, the need for, color invariants, SIFT
4. BoW overview encode and classify
5. Encoders, sparse coding, autoencoders, Fisher vectors
6. SVM, separability, kernels
7. Finale: BoW vs CNN



1. Introduction

How is a computer capable of converting digital camera 
recordings to a notion what is on the picture? How does it know 
how a boat looks like a boat, when there are so many different 
types and so many different views? And what is harder to 
recognize, a fork or a knife? A glass or a plate? We discuss 
concepts and aspects and how a computer can learn to recognize 
these things in an image. 



What does Google know?
When you type in a question in Google, it goes through its 
records to see what other people have used for an answer.

Brilliant move. 
They (used to reproduce) what other people know.



We start from what we know

1213323212312
1224343642425
3232313132313
4342424144242
4342442424244
1323231355252
6563646563423

How do we convert light intensity patterns into meaning?
How does your eye, any eye, learns to recognize this?                              



Once upon a time, someone pointed at

and said “there”...
The invention 1. of visual recognition and 2. of language: 

Mankind’s great invention



Vision and words
Later, “there” became “cow”. Things got their names.

How is this done? Most people assume outline & recognize. 



Learn to recognize objects

What knowledge is needed for proper segmentation?

When is segmentation really needed?



Quiz: What actions require
a. segment, b. recognize, c. both?

1. catch?

4. grab?

2. avoid?
3. cuddle?

5. puzzle?



Learning in Computer Vision

This is the semantic gap. Learn, not model.

What is tea?

Smeulders PAMI 2000



Things learned in Computer Vision

A concept is a named entity bicycle, 2 persons or
a mass-good grass, ants, tea, measles or
a labeled scene mountainous, birthday

An aspect is a state of happy, dried, atherosclerosis



Learning in Computer Vision
What is tea?

Quiz 1: Name tea - subtypes.
2: Name visual tasks per subtype?



Tasks in Computer Vision

Learn concepts given labeled examples.
Localize concepts given labeled examples.
Count concepts 
Search for examples similar to this.
Explain evidence for concepts.
Estimate variance intrinsic or extrinsic to concept.

Generalize aspects over concepts.
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Numbers of examples

Number of examples per concept: capture the variance.

50 gives a good insight in common variations
1000 covers even rare variations

1 search for look-alikes
0 consult sources of knowledge
7 what is structural, what is accidental variation?

Let’s understand this order.
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Knowledge is …

Human knowledge is laid down in invariances. Statements 
which are always true, regardless of accidental conditions. 

Learning starts from an analysis of variances.



2. Observables

We recapitulate color, spatial, temporal and texture observables. 
Color is powerful as pixel observations lead to object intrinsic 
information separated from image accidental information. 
Spatial observables form the Taylor expansion of the image. We 
discuss the Gaussian implementation including the temporal. 
Finally, texture is defined by Gabor filters. 
The observables are brought together in the Gaussian family. 
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E = (R,G,B)
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HSI = Human sensation of light

Hue: dominant wavelength l(EH)
Saturation: purity of the colour (EH - EW)/EH
Intensity: brightness of the colour EW

white light                               green light

EH

E
W



HSI in E - space
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H & S are illumination invariant 
body properties, separating the 
accidental recording conditions  
from the intrinsic body condition.



Human perception combines (R,G,B) response 
of the eye in opponent colors

as it maximizes the contrast.

Opponent colors
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Pixel-level

Pixel values have accidental variation due to body reflection. 

Cancel them out, first.

This cow is brown.



Analysis

So far we have talked about how light makes images.
Now we want to turn it around: we learn off images. 

Which properties do we measure?
How do we measure properly?

The Taylor expansion for light is: 



Sampling the light

The Taylor expansion for light is: 

For discretely sampled signal use Gaussian filters

Among the class of linear filters, Gauss is separable by 
dimension, rotationally uniform, sloping to zero, adds no 
maxima and so on. It is the preferred brand of local filters. 



(E0,El,Ell)-pdf

Color Gaussians

(R,G,B)-pdf

Geusebroek PAMI 2002
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Spatial Gaussians
For spatial filters, this is Gauss in zero and first order:

Fast approximate recursive implementation:
Geusebroek, Van de Weijer & Smeulders 2002



Quiz: Draw 2nd color/spatial order

Gaussian in zero and first order and their receptive fields:

? ? ? ? ? ? ? ? ?



Differentials are everywhere

T-junction

Highlight
Corner

Junction



The 2D Gabor function with parameters: u, v, s:
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Gaussian - Gabor texture

Gabor for texture in Fourier-space

Manjunath & Ma



Gaussian - Gabor texture

The receptive fields for (u, v) measured locally

Grey and opponent color feature sets.

Hoang SP 2003



Gaussian - Gabor texture

K-means cluster
of RGB

K-means cluster
Gabor opponent

Hoang ECCV 2002



Gaussian temporals

Gaussian equivalent over x and t:

zero order first order over t

Burghouts TIP 2006



Gaussian: the complete family

The basic visual observables are:



All observables up to first order color, 
second order spatial scales, eight 
frequency bands & first order in t. 

Gaussian: the complete family

Among the class of linear filters, only Gauss is separable by 
dimension when rotationally uniform, and adds no maxima. 



Good observables

1. Good features ignore all irrelevant variations,
accidental, recording specific, individual variations.

2. Good features capture all distinguishing variations,
pairs-of-class-specific variations. 

3. Good sampling provides all relevant group information
either by random sampling or stratified sampling.

4. Good features have a good repeatability,
and produce little noise themselves.



How errors ruin your features:

For sums of two observables:
Products of two observables:

a. Close to 0, beware of division!
b. Invariants are usually a division!
a. + b. : Beware of using invariants!

Good observables: note to 4. 
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Good observables ≅ easy algorithm

Periodicity:

Detect periodic motion by one steered filter:

Deadly simple algorithm… 
Burghouts TIP 2006



3. Invariants

Invariance aims to exclude all irrelevant variations. 
Color invariants are powerful for everything related to illumination, 
and in the end simple. 
The quality of invariant features: invariance + discrimination. 



There are a million appearances to one object

The same part of the same shoe does not have the same 
appearance in the image. This is the sensory gap.
Remove unwanted variance as early as you can.

The need for invariance



A feature g is invariant under condition (transform) 
caused by accidental conditions at the time of recording,
iff g observed on equal objects      and      is constant:

Length of long axis / short axis
independent of scale and rotation. 

The need for invariance



Quiz: scale invariant detection

What properties are invariant to observation scale?

Scale invariants are at least dimensionless numbers:
+ The ratio of the long and short axes.
+ Corners.
+ Length squared divided by area. 



Reflectance model [Shafer]
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Color invariance: reflectance



E is viewpoint variant

The surface reflection term:

reduces to simpler form of Phong: 
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E space C space

C is viewpoint invariant

Gevers TIP 2000
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Differential invariants C’, W’, M’

C’ is for matte objects and uneven white light:
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W’ is for matte planar objects and even white light:
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The most invariant feature is the value “42”.

Desired invariance « undesired loss of discriminative power.

Invariance & Discrimination

Total loser



shadows  shading  highlights  ill. intensity  ill. color
E - - - - -
H +          +              +                 +               -
W & W’ - +              - +               -
C & C’ +          +              - +               -
M & M’ +          +              - +               +
L +          +             +                  +               -

E 990
H 315

Retained from 1000 colors s = 3: W’ 995
C’ 850
M’ 900

Retained discrimination

Geusebroek PAMI 2003



Quiz: a. What sources of variance
b. Find ways to get invariance 

This is an orbit.



SIFT

For 4x4 patches, find 4x4 significant gradients > threshold.

Find orientation spectrum by #significant edges per direction. 

8 orientations in 16 patches, normalize = 128D SIFT feature.

Image gradient directions           histogram = SIFTLowe IJCV 2004



SIFT invariances
1. Intensity invariant due to orientation of edge only.
2. Surface roughness invariant due to thresholded gradients.
3. Occlusion invariant [when visible] due to locality.
4. Viewpoint mildly invariant by using dominant orientation.
5. Rotation hardly invariant (normalizing dominant direction)
6. Scale hardly invariant (maximize response over scales)
7. Translation not invariant (collect response over region)
while still
Discriminative among objects due to high dimensionality

(enhance by invariant colors [Van der Sande PAMI 2010])



4. Bags of Words

SIFT solves illumination, roughness, occlusion, viewpoint to 30o.
invariance left to cover remedy
Viewpoint beyond 30o record many views
Rotation normalize orientation, collect points
Scale maximize over scale views
Translation collect many points in a bag

Bag of words is a multi-stage code & classify process aimed at
separating variability of feature values from invariant labels. 



Capture the pattern in each patch

Measure the pattern in a patch with abundant features.
SIFT is good, cSIFT is better.
Gauss family will also do it.

Normalized is better.
More patches is better.
More features is better.



Sample many patches

Sample the patches in the image. Salient-sampling 2**10.
Densely 2**18.
Salience is good, dense better. 

.

Tinne Tuytelaers discusses dense saliency.



Gather region by region

A spatial pyramid gathers location-dependent evidence
3x3 two-layer pyramid is good.
More-layered reduction is better.



Sample many images

Sample the images in the world: the learning set.
Learn all relevant variability between types. 
Learn all irrelevant variations not covered by invariance.



Form a dictionary of visual words

Form regions in feature space: 4,000 visual words
More words needed for fine detail discrimination. 

Words cover several types of patches 
Collections of words are still discriminative.

Similar patches may emerge distant.



Encode patches into words
Word occurrences per training image: area covered.
Soft assign to code words [Van Gemert PAMI 2010].
Make a word histogram: {none, rare, few, some, many}.



Classify histogram of words

Learn the word-count histogram Vj = {t1, t2, … tN} per type. 
Similarity between Vq and each vector Vj in the dataset by:

normalized scalar product = Vq . Vj / ||Vq||.||Vt||



BoW

Features large dimensionality for omni-potency.
powerful normalization & invariance.

Multi-stage encode – classify process to separate:
the variabilities of the world.
from the invariability of the class.



5. Encoders
We consider the external and internal structure of a code 
word, as well as the local structure around the code word in 
feature space. What is the external structure of a code? We 
discuss shallow and deep encoders. What does the internal 
structure of a code reveal? Knowledge of the distribution 
within the words delivers two new representations: Fisher 
and VLAD.



External & Internal Structure

x x

x

x

External structure
1. Actual words boundaries pretty arbitrary.
2. Use multiple neighbor codes: soft assignment.
3. Use over complete but sparse dictionary: sparse coding.
4. Deep learning by autoencoder.

Internal structure
1. Internal structure of words ignored by (hard, soft, sparse) counting.
2. Use other statistics > Mean subtract: VLAD / GMM: Fisher



Codebook assignmentQuiz: How to count codes? 
(the hard way)



External: soft word assignment
Assign to more than 1 word by weights
Code word uncertainty:

Van Gemert PAMI 2010



Codebook assignmentQuiz: How to count codes? 
(the soft way)



External: sparse coding
Originally developed to explain early visual processing in the 

brain by means of edge encodings

Objective: Given a set of input data vectors (x(1), x(2), …, x(m)) 
learn a dictionary of bases (f1, f2, …, fk) such that:

Each data vector is encoded as linear combination of bases

Olshausen & Field, Nature 1996

Sparse: enforce most to be zero



External: sparse coding



Sparse coding: training
Input: Images x(1), x(2), …, x(m) (each in Rn x n)

Sparsity penalty

Alternately minimize with respect to fi‘s (easy) 
and a’s (harder).

Reconstruction error



Sparse coding: testing
Input: Novel image x (in Rn x n) and previously learned fi’s.
Output: Representation [a1, a2, …, ak] of image x. 

» 0.8 *                   + 0.3 *                     + 0.5 *

x » 0.8 *       f
36

+  0.3 *        f42 + 0.5 *       f63

Represent	as:		[0,	0,	…,	0, 0.8,	0,	…,	0,	0.3,	0,	…,	0,	0.5,	…]	



Results
Training 192 basis functions on 16x16 image patches from 

natural scene images



K-means vs. sparse coding

Centroid 1

Centroid 2

Centroid 3

K-means

Represent as: 

Basis f1

Sparse coding

Represent as: 

Basis f2

Basis f3



K-means vs. sparse coding

Rule of thumb: 
Whenever using k-means to get a dictionary, if you 
replace it with sparse coding it will often work better.  



External: Autoencoder

Hinton & Salakhutdinov, Science 2006



Autoencoder
Introduction of pretraining

Layer-by-layer learning



Autoencoder
Introduction of pretraining

Layer-by-layer learning

Unrol into encoder and decoder



Autoencoder
Introduction of pretraining

Layer-by-layer learning

Unrol into encoder and decoder

Finetune entire network



Some results
Autoencoder to extract 30d codes for Olivetti face images

Input

Autoencoder

PCA



Internal: VLAD

Jegou CVPR 2010

Hard assignment to nearest 
word.

Subtract learned mean for 
differential coding efficiency.

Rather than count, sum all 
code residues within a word. 

Concatenate all word sums 
and l2-normalize.

Memory efficient coding.



Internal: VLAD

Jegou CVPR 2010

Red = residual of v for 16 words of 128 dimensions each.  



Internal: Fisher vector
Score G of sample X given GMM-likelihood u with param l:

Derivative reveals differential GMM-parameters for the sample.
Form the Fisher matrix to measure …

… similarity between samples by the (inversed) Fisher kernel: 

This transform spreads out all encodings for better distinction.

Perronnin CVPR 2007, ECCV 2010



Internal: Fisher vector

Compare N words to 2DN for D feature dimensions.

Perronnin CVPR 2007, ECCV 2010



Internal: Fisher vector
Fisher vector with diagonal covariance matrix: 

5% better than BoW, smaller D of codebooks needed.

Improved by using the L2 – norm.
Improved by using a power – norm.
Improved by spatial pyramids.

Perronnin CVPR 2007, ECCV 2010
D = 256



Write a paper.

Quiz: What is the relation between 
soft, sparse and Fisher?



6. Support Vector Machine

The support vector machine separates an n-dimensional feature 
space into a class of interest and a class of disinterest by means 
of a hyperplane. A hyperplane is considered optimal when the 
distance to the closest training examples is maximized for both 
classes. The examples determining this margin are called the 
support vectors. For nonlinear margins, the SVM exploits the 
kernel trick. It maps the distance between feature vectors into a 
higher dimensional space in which the hyperplane separator and 
its support vectors are obtained as easy as in the linear case. 
Once the support vectors are known, it is straightforward to define 
a decision function for an unseen test sample.

Vapnik, 1995



Linear classifiers
Quiz: What linear classifier is best?



Linear classifiers - margin



Training a linear SVM
To find the maximum margin separator, we have to solve 
the following optimization problem:

Convex problem. Solved by quadratic programming.
Software available: LIBSVM, LIBLINEAR

Quadratic w.r.t. the number of training samples (ouch!)
For big datasets approximations mandatory

possibleassmallasisand

casesnegativeforb

casespositiveforb
c

c

2||||

1.

1.

w

xw

xw

-<+

+>+



Testing a linear SVM
The separator is defined as the set of points for which:

casenegativeaitssaybifand
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L2 Normalization
Linear classifier for object and scene classification prefers 

L2 normalization [Vedaldi ICCV09]

Important for Fisher vector

Acts as scale invariant

Large object bias Small object bias

No scale bias



Quiz: What if data is not linearly 
separable?

?



Solutions for non separable data

1. Slack variables

2. Feature transformation



1. Introducing slack variables
Slack variables are constrained to be non-negative. When 
they are greater than zero they allow us to cheat by putting 
the plane closer to the datapoint than the margin. So we 
need to minimize the amount of cheating. This means 
we have to pick a value for lambda
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Slide credit: Geoff Hinton



Separator with slack variable

Slide credit: Geoff Hinton



2. Feature transformations
Transform the feature space in order to achieve
linear separability after the transformation. 



The kernel trick
For many mappings from a 

low-D space to a high-D 
space, there is a simple 
operation on two vectors 
in the low-D space that 
can be used to compute 
the scalar product of their 
two images in the high-D 
space.

)(.)(),( baba xxxxK ff=

f

Low-D

High-D

doing the scalar 
product in the 
obvious way

Letting the 
kernel do 
the work

ax

)( axf
)( bxf

bx

Slide credit: Geoff Hinton



The classification rule

The final classification rule is quite simple:

All the cleverness goes into selecting the support vectors 
that maximize the margin and computing the weight to 
use on each support vector.
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The set of 
support vectors

Slide credit: Geoff Hinton



Popular kernels for computer vision

Slide credit: Cordelia Schmid



Linear vs non-linear kernels

Linear Non-linear
Training speed Very fast Very slow
Training scalability Very high Low

Testing speed Very fast Very slow
Test accuracy Lower Higher

Slide credit: Jianxin Wu



Nonlinear kernel speedups

Additivity

Homogeneity

Many have proposed speedups for nonlinear kernels. 
Exploiting two basic properties:

Fast HIK as fast as linear kernel exploiting additivity
Feature maps for all additive homogeneous kernels.

Maji et al. PAMI 2013 Vedaldi et al. PAMI 2012



Selecting and weighting dimensions
For additive kernels all dimensions are equal

We introduce scaling factor c

Kernel reduction as convex optimization problem

i

Gavves, CVPR 2012

2



Sparse coding of the kernel

Similar	accuracy	with	a	45-85%	smaller	size.	

Equally accurate and 10x faster 
as PCA codebook reduction.
Applies also to Fisher vectors.

Gavves, CVPR 2012



Selected kernel dimensions

Note:	descriptors	originally	dense	sampled



Performance
Support Vector Machines work very well in practice. 

– The user must choose the kernel function and its 
parameters, but the rest is automatic.

– The test performance is very good.

They can be expensive in time and space for big datasets
– The computation of the maximum-margin hyper-plane 

depends on the square of the number of training cases.
– We need to store all the support vectors.
– Exploit kernel additivity and homogenity for speedup

SVM’s are very good if you have no idea about what structure 
to impose on the task.



7. Finale: BoW versus CNN

Bag of words is a multi-stage code & classify process aimed at
separating variability of feature values from invariant labels.

CNN is a multi-stage code & classify process aimed at
separating variability of images from invariant labels. 



Capture the pattern in each patch

Measure the pattern in a patch with abundant features. 
More patches is better. More features is better. Normalized.



Sample many patches

Sample the patches in the image.
Salience is good, dense better. us

Zeiler and Fergus ECCV 2014



Gather region by region

A spatial pyramid gathers 
location-dependent evidence
More-layered reduction is better.

Zeiler and Fergus ECCV 2014



Sample many images

Sample the images in the world:
Learn all relevant variability between types. 
Learn all irrelevant variations not covered by invariance.



Encode patches into words
Form regions in feature space. More words needed for fine 
detail discrimination. Words cover several types of patches. 
Collections of words are still discriminative. Soft assign to 
code words. Count.



Classify histogram of words

Learn the word-count per type. Classify similarity profile.
Nguyen et al. arXiv 2014



BoW and CNN’s

Features large dimensionality for omni-potency.
powerful normalization & invariance.

Multi-stage encode – classify process to separate:
the variabilities of the world.
from the invariability of the class.



Overview Day 1

1. Introduction, types of concepts, tasks, knowledge as invariance
2. Observables, color, space, time, texture, Gaussian family
3. Invariance, the need for, color invariants, SIFT
4. BoW overview encode and classify
5. Encoders, sparse coding, autoencoders, Fisher vectors
6. SVM, separability, kernels
7. Finale: BoW vs CNN



Tomorrow

1. Vision in the Deep Learning Era I
2. Vision in the Deep Learning Era II
3. Action recognition by learning


