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Overview – Day 1 

1. Introduction, types of concepts, relation to tasks, invariance 
2. Observables, color, space, time, texture, Gaussian family 
3. Invariance, the need, invariants, color, SIFT, Harris, HOG 
4. BoW overview, what matters 
5. On words and codebooks, internal and local structure, soft 
assignment, synonyms, convex reduction, Fisher & VLAD 
 
6. Object and scene classification, recap chapters 1 to 5. 
7. Support vector machine, linear, nonlinear, kernel trick. 
8. Codemaps, L2-norm for regions, nonlinear kernel pooling. 
 
 
 
 



6. Object and scene classification 

Computer vision by learning is important for accessing visual 
information on the level of objects and scene types. The common 
paradigm for object and scene detection during the past ten years 
rests on observables, invariance, bag of words, codebooks and 
labeled examples to learn from. We briefly summarize the first two 
lectures and explain what is needed to learn reliable object and 
scene classifiers with the bag of words paradigm. 
 
 



How difficult is the problem? 
  
 Human vision consumes 50% brain power… 

Van Essen, Science 1992 



Object and scene classification 

Bicycle 

Testing: Does this image contain any bicycle? 

Training: 

Bicycles 

Not bicycles 

Object 
Classfication 

System 



Simple example 

Visualization by Jasper Schulte 
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Classifiers 
Nearest neighbor methods 
Neural networks 
Support vector machines 
Randomized decision trees 
… 
 



7. Support Vector Machine 

The support vector machine separates an n-dimensional feature 
space into a class of interest and a class of disinterest by means 
of a hyperplane. A hyperplane is considered optimal when the 
distance to the closest training examples is maximized for both 
classes. The examples determining this margin are called the 
support vectors. For nonlinear margins, the SVM exploits the 
kernel trick. It maps the distance between feature vectors into a 
higher dimensional space in which the hyperplane separator and 
its support vectors are obtained as easy as in the linear case. 
Once the support vectors are known, it is straightforward to define 
a decision function for an unseen test sample. 
 

Vapnik, 1995 



Linear classifiers 

Slide credit: Cordelia Schmid 

Quiz: What linear classifier is best? 



Linear classifiers - margin 

Slide credit: Cordelia Schmid 



Training a linear SVM 
To find the maximum margin separator, we have to solve  
the following optimization problem: 
 
 
 
 
 
Convex problem. Solved by quadratic programming. 

 Software available: LIBSVM, LIBLINEAR 
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Testing a linear SVM 
The separator is defined as the set of points for which: 
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L2 Normalization 
Linear classifier for object and scene classification prefers 

L2 normalization [Vedaldi ICCV09] 
 
 
 
 
Important for Fisher vector 
 
Acts as scale invariant 
 

Large object bias Small object bias 

No scale bias 



Quiz: What if data is not linearly 
separable? 

? 



Solutions for non separable data 
 
 
1. Slack variables 
 
2. Feature transformation 



1. Introducing slack variables 
Slack variables are constrained to be non-negative. When  
they are greater than zero they allow us to cheat by putting  
the plane closer to the datapoint than the margin. So we  
need to minimize the amount of cheating. This means  
we have to pick a value for lambda 
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Separator with slack variable 

Slide credit: Geoff Hinton 



2. Feature transformations 
Transform the feature space in order to achieve 
linear separability after the transformation.  
 



The kernel trick 
For many mappings from a 

low-D space to a high-D 
space, there is a simple 
operation on two vectors 
in the low-D space that 
can be used to compute 
the scalar product of their 
two images in the high-D 
space. 
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kernel do 
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Slide credit: Geoff Hinton 



The classification rule 

The final classification rule is quite simple: 
 
 
 
 
 
 
All the cleverness goes into selecting the support vectors 

that maximize the margin and computing the weight to 
use on each support vector. 
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Slide credit: Geoff Hinton 



Popular kernels for computer vision 

Slide credit: Cordelia Schmid 



Quiz 
Quiz: linear vs non-linear kernels 

Linear Non-linear 
Training speed 
Training scalability 
 
Testing speed 
Test accuracy 



Quiz 
Quiz: linear vs non-linear kernels 

Linear Non-linear 
Training speed Very fast Very slow 
Training scalability 
 

Very high Low 

Testing speed Very fast Very slow 
Test accuracy Lower Higher 

Slide credit: Jianxin Wu  
 



Nonlinear kernel speedups 

Additivity 

Homogeneity 

Many have proposed speedups for nonlinear kernels.  
Exploiting two basic properties: 
 
 
 
 
 
 
 
Nonlinear as fast as linear kernel exploiting additivity 
Feature maps for all additive homogeneous kernels. 
 

Maji et al. PAMI 2013 Vedaldi et al. PAMI 2012 



Selecting and weighting dimensions 
For additive kernels all dimensions are equal 
 
 
We introduce scaling factor c 
 
 
 
Kernel reduction as convex optimization problem 
 
 
 

i	
  

Gavves, CVPR 2012 
 

2	
  



Convex reduced kernels 
	
  
	
  	
  
Similar	
  accuracy	
  with	
  a	
  45-­‐85%	
  smaller	
  size.	
  	
  

Equally accurate and 10x faster  
as PCA codebook reduction. 
Applies also to Fisher vectors. 
 

Gavves, CVPR 2012 
 



Selected kernel dimensions 

Note:	
  descriptors	
  originally	
  dense	
  sampled	
  



Performance 
Support Vector Machines work very well in practice.  

–  The user must choose the kernel function and its 
parameters, but the rest is automatic. 

–  The test performance is very good. 
 
They can be expensive in time and space for big datasets 

–  The computation of the maximum-margin hyper-plane 
depends on the square of the number of training cases. 

–  We need to store all the support vectors. 
–  Exploit kernel additivity and homogenity for speedup 

 
SVM’s are very good if you have no idea about what structure 

to impose on the task. 



Quiz: what is remarkable about 
bag-of-words with SVM? 

Local Feature 
Extraction 

Feature 
Pooling 

Feature 
Encoding 

Kernel 
Classification 



Bag-of-words ignores locality 
 
Solution: spatial pyramid 

–  aggregate statistics of local features over fixed subregions 

 
 

Grauman, ICCV 2005, Lazebnik, CVPR 2006 
 



Spatial pyramid kernel 
For homogeneous kernels the spatial pyramid is simply  
obtained by concatenating the appropriately weighted  
histograms of all channels at all resolutions. 
 

Lazebnik, CVPR 2006 
 



 
 
Suppose we have images that may contain a tank, but with a  
cluttered background. 
 
To recognize which ones contain a tank, it is no good  
computing a global similarity 
 
We need local features that are appropriate for the task.  
 
Its very appealing to convert a learning problem to a convex  
optimization problem, but we may end up by ignoring aspects  
of the real learning problem in order to make it convex.  

Problem posed by Hinton 



8. Codemaps 

Codemaps integrate locality into the bag-of-words paradigm. 
Codemaps are a joint formulation of the classification score and 
the local neighborhood it belongs to in the image. We obtain the 
codemap by reordering the encoding, pooling and SVM 
classification steps over lattice elements. Codemaps include L2 
normalization for arbitrarily shaped image regions and embed 
nonlinearities by explicit or approximate feature mappings. Many 
computer vision by learning problems may profit from codemaps. 
 
 

Slides Credit: Zhenyang Li ICCV13 



Local object classification 

Repeat for each region 

Local Feature 
Extraction 

Feature 
Pooling 

Feature 
Encoding 

Kernel 
Classification 

Spatial Pyramids [Lazebnik, CVPR06] 
(#regions: 10-100) 

Object Detection [Sande, ICCV11] 
(#regions: 1,000-10,000) 
 

Semantic Segmentation [Carreira, CVPR09] 
(#regions: 100-1,000) 
 

Requires repetitive computations on overlapping regions 



Decompose BoW + linear SVM 
Efficient window/region search for detection 
 
 
 
 
 
 
Problem 1: Kernel classifier requires normalization 

–  Linear classifier prefers L2 normalization [Vedaldi, ICCV09] 

 
Problem 2: Object classification profits from nonlinearities 

–  BoW+Intersection Kernel [Maji, ICCV09] 
–  Fisher+power norm [Perronnin, ECCV10] 

SVM weight for j-th word 

          if feature      mapped into j-th word 

Per-descriptor classification score 

 Lampert, PAMI09; Vijayanarasimhan, CVPR11 



Codemaps 
 
Decomposes any encoding with sum pooling + linear classifier 

L2 normalization for arbitrarily shaped image regions 

Nonlinearities by local kernel pooling for object classification 

Li ICCV 2013 



Lattice                               ; Sum pooling              ; Linear classifier  
 
Goal: reorder the encoding, pooling, classification of general object 
classification 
 
 

Codemaps 



Decomposition 
Lattice                               ; Sum pooling              ; Linear classifier  
 
 
 

Lex Pooling Lex Classification Feature Encoding Classification Pooling 



L2 normalization for regions 
Lattice                               ; Sum pooling              ; Linear classifier  
 
 
 

L2 normalized classification score: 

Lex Pooling Lex Classification Feature Encoding Normalized Classification Pooling 



L2 normalization for regions 
Lattice                               ; Sum pooling              ; Linear classifier  
 
 
 

L2 normalized classification score: 

 pair-wise lex similarity 

 per-lex classification score 

Lex Pooling Lex Classification Feature Encoding Normalized Classification Pooling 



Embed nonlinearity 
Similarity between two codemaps for image X and Z can be reduced 

into pair-wise similarity between lexes 
 
 
 
 
 
Kernel Trick 
Replace linear kernel with more sophisticated nonlinear ones for lexes 



Nonlinear kernel pooling 
 
 
 
 
 
 
 
 
 
 
                         where   

approximated feature map 
 
 

Vedaldi, PAMI 2012 



Nonlinear kernel pooling 
 
 
 
 
 
 
 
 
 
 
                         where   

approximated feature map 
 
 

linear classifier 

local nonlinear kernel pooling on each lex 

global sum pooling 

Vedaldi, PAMI 2012 



Timing and memory usages 
 
 
 
 
 
 
 
 
Using Fisher encoding 
L2 normalized codemaps are up to 56x faster than Fisher vectors 
L2 normalization for arbitrary regions is as efficient for 4-500 lexes 
Computing codemaps ~600MB/image, while storing ~30MB/image 
 



Codemap segment classification 
Gavves, PAMI submitted 



Codemaps 
Computer vision by learning challenges involving repetitive  
computations over overlapping image regions may profit  
from codemaps. 
 
Connection to convolutional networks? 
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Tomorrow 
Laurens van der Maaten on 
 
1.  Pictorial structures 
2.  Latent and Structured SVMs 
3.  Convolutional networks 


