
Computer Vision by Learning

Cees Snoek
Laurens van der Maaten
Arnold W.M. Smeulders

University of Amsterdam

Delft University of Technology

Overview – Day 1

1. Introduction, types of concepts, relation to tasks, invariance
2. Observables, color, space, time, texture, Gaussian family
3. Invariance, the need, invariants, color, SIFT, Harris, HOG
4. BoW overview, what matters
5. On words and codebooks, internal and local structure, soft
assignment, synonyms, convex reduction, Fisher & VLAD

6. Object and scene classification, recap chapters 1 to 5.
7. Support vector machine, linear, nonlinear, kernel trick.
8. Codemaps, L2-norm for regions, nonlinear kernel pooling.

6. Object and scene classification

Computer vision by learning is important for accessing visual
information on the level of objects and scene types. The common
paradigm for object and scene detection during the past ten years
rests on observables, invariance, bag of words, codebooks and
labeled examples to learn from. We briefly summarize the first two
lectures and explain what is needed to learn reliable object and
scene classifiers with the bag of words paradigm.

How difficult is the problem?

 Human vision consumes 50% brain power…

Van Essen, Science 1992

Object and scene classification

Bicycle

Testing: Does this image contain any bicycle?

Training:

Bicycles

Not bicycles

Object
Classfication

System

Simple example

Visualization by Jasper Schulte

e.g.
SIFT

dense sampling

Object and scene classification

Local Feature
Extraction

Feature
Pooling

Feature
Encoding Classification

e.g.
SIFT

dense sampling

Object and scene classification

Local Feature
Extraction

Feature
Pooling

Feature
Encoding Classification

BoW
Sparse coding
Fisher
VLAD

e.g.
SIFT

dense sampling

Object and scene classification

Local Feature
Extraction

Feature
Pooling

Feature
Encoding Classification

avg/sum pooling
max pooling

BoW
Sparse coding
Fisher
VLAD

e.g.
SIFT

dense sampling

Object and scene classification

Local Feature
Extraction

Feature
Pooling

Feature
Encoding Classification

avg/sum pooling
max pooling

BoW
Sparse coding
Fisher
VLAD

?

Classifiers
Nearest neighbor methods
Neural networks
Support vector machines
Randomized decision trees
…

7. Support Vector Machine

The support vector machine separates an n-dimensional feature
space into a class of interest and a class of disinterest by means
of a hyperplane. A hyperplane is considered optimal when the
distance to the closest training examples is maximized for both
classes. The examples determining this margin are called the
support vectors. For nonlinear margins, the SVM exploits the
kernel trick. It maps the distance between feature vectors into a
higher dimensional space in which the hyperplane separator and
its support vectors are obtained as easy as in the linear case.
Once the support vectors are known, it is straightforward to define
a decision function for an unseen test sample.

Vapnik, 1995

Linear classifiers

Slide credit: Cordelia Schmid

Quiz: What linear classifier is best?

Linear classifiers - margin

Slide credit: Cordelia Schmid

Training a linear SVM
To find the maximum margin separator, we have to solve
the following optimization problem:

Convex problem. Solved by quadratic programming.

 Software available: LIBSVM, LIBLINEAR

possibleassmallasisand

casesnegativeforb

casespositiveforb
c

c

2||||

1.

1.

w

xw

xw

−<+

+>+

Testing a linear SVM
The separator is defined as the set of points for which:

 casenegativeaitssaybifand

casepositiveaitssaybifso

b

c

c

0.

0.

0.

<+

>+

=+

xw

xw

xw

L2 Normalization
Linear classifier for object and scene classification prefers

L2 normalization [Vedaldi ICCV09]

Important for Fisher vector

Acts as scale invariant

Large object bias Small object bias

No scale bias

Quiz: What if data is not linearly
separable?

?

Solutions for non separable data

1. Slack variables

2. Feature transformation

1. Introducing slack variables
Slack variables are constrained to be non-negative. When
they are greater than zero they allow us to cheat by putting
the plane closer to the datapoint than the margin. So we
need to minimize the amount of cheating. This means
we have to pick a value for lambda

possibleassmallasand

callforwith

casesnegativeforb

casespositiveforb

c

c

c

cc

cc

∑+

≥

+−≤+

−+≥+

ξλ

ξ

ξ

ξ

2
||||

0

1.

1.

2w

xw

xw

Slide credit: Geoff Hinton

Separator with slack variable

Slide credit: Geoff Hinton

2. Feature transformations
Transform the feature space in order to achieve
linear separability after the transformation.

The kernel trick
For many mappings from a

low-D space to a high-D
space, there is a simple
operation on two vectors
in the low-D space that
can be used to compute
the scalar product of their
two images in the high-D
space.

)(.)(),(baba xxxxK φφ=

φ

Low-D

High-D

doing the scalar
product in the
obvious way

Letting the
kernel do
the work

ax

)(axφ
)(bxφ

bx

Slide credit: Geoff Hinton

The classification rule

The final classification rule is quite simple:

All the cleverness goes into selecting the support vectors

that maximize the margin and computing the weight to
use on each support vector.

.

∑ >+
SVs

stest
s xxKwbias

ε

0),(

The set of
support vectors

Slide credit: Geoff Hinton

Popular kernels for computer vision

Slide credit: Cordelia Schmid

Quiz
Quiz: linear vs non-linear kernels

Linear Non-linear
Training speed
Training scalability

Testing speed
Test accuracy

Quiz
Quiz: linear vs non-linear kernels

Linear Non-linear
Training speed Very fast Very slow
Training scalability

Very high Low

Testing speed Very fast Very slow
Test accuracy Lower Higher

Slide credit: Jianxin Wu

Nonlinear kernel speedups

Additivity

Homogeneity

Many have proposed speedups for nonlinear kernels.
Exploiting two basic properties:

Nonlinear as fast as linear kernel exploiting additivity
Feature maps for all additive homogeneous kernels.

Maji et al. PAMI 2013 Vedaldi et al. PAMI 2012

Selecting and weighting dimensions
For additive kernels all dimensions are equal

We introduce scaling factor c

Kernel reduction as convex optimization problem

i	

Gavves, CVPR 2012

2	

Convex reduced kernels
	

	
 	

Similar	
 accuracy	
 with	
 a	
 45-­‐85%	
 smaller	
 size.	
 	

Equally accurate and 10x faster
as PCA codebook reduction.
Applies also to Fisher vectors.

Gavves, CVPR 2012

Selected kernel dimensions

Note:	
 descriptors	
 originally	
 dense	
 sampled	

Performance
Support Vector Machines work very well in practice.

–  The user must choose the kernel function and its
parameters, but the rest is automatic.

–  The test performance is very good.

They can be expensive in time and space for big datasets

–  The computation of the maximum-margin hyper-plane
depends on the square of the number of training cases.

–  We need to store all the support vectors.
–  Exploit kernel additivity and homogenity for speedup

SVM’s are very good if you have no idea about what structure

to impose on the task.

Quiz: what is remarkable about
bag-of-words with SVM?

Local Feature
Extraction

Feature
Pooling

Feature
Encoding

Kernel
Classification

Bag-of-words ignores locality

Solution: spatial pyramid

–  aggregate statistics of local features over fixed subregions

Grauman, ICCV 2005, Lazebnik, CVPR 2006

Spatial pyramid kernel
For homogeneous kernels the spatial pyramid is simply
obtained by concatenating the appropriately weighted
histograms of all channels at all resolutions.

Lazebnik, CVPR 2006

Suppose we have images that may contain a tank, but with a
cluttered background.

To recognize which ones contain a tank, it is no good
computing a global similarity

We need local features that are appropriate for the task.

Its very appealing to convert a learning problem to a convex
optimization problem, but we may end up by ignoring aspects
of the real learning problem in order to make it convex.

Problem posed by Hinton

8. Codemaps

Codemaps integrate locality into the bag-of-words paradigm.
Codemaps are a joint formulation of the classification score and
the local neighborhood it belongs to in the image. We obtain the
codemap by reordering the encoding, pooling and SVM
classification steps over lattice elements. Codemaps include L2
normalization for arbitrarily shaped image regions and embed
nonlinearities by explicit or approximate feature mappings. Many
computer vision by learning problems may profit from codemaps.

Slides Credit: Zhenyang Li ICCV13

Local object classification

Repeat for each region

Local Feature
Extraction

Feature
Pooling

Feature
Encoding

Kernel
Classification

Spatial Pyramids [Lazebnik, CVPR06]
(#regions: 10-100)

Object Detection [Sande, ICCV11]
(#regions: 1,000-10,000)

Semantic Segmentation [Carreira, CVPR09]
(#regions: 100-1,000)

Requires repetitive computations on overlapping regions

Decompose BoW + linear SVM
Efficient window/region search for detection

Problem 1: Kernel classifier requires normalization

–  Linear classifier prefers L2 normalization [Vedaldi, ICCV09]

Problem 2: Object classification profits from nonlinearities

–  BoW+Intersection Kernel [Maji, ICCV09]
–  Fisher+power norm [Perronnin, ECCV10]

SVM weight for j-th word

 if feature mapped into j-th word

Per-descriptor classification score

 Lampert, PAMI09; Vijayanarasimhan, CVPR11

Codemaps

Decomposes any encoding with sum pooling + linear classifier

L2 normalization for arbitrarily shaped image regions

Nonlinearities by local kernel pooling for object classification

Li ICCV 2013

Lattice ; Sum pooling ; Linear classifier

Goal: reorder the encoding, pooling, classification of general object
classification

Codemaps

Decomposition
Lattice ; Sum pooling ; Linear classifier

Lex Pooling Lex Classification Feature Encoding Classification Pooling

L2 normalization for regions
Lattice ; Sum pooling ; Linear classifier

L2 normalized classification score:

Lex Pooling Lex Classification Feature Encoding Normalized Classification Pooling

L2 normalization for regions
Lattice ; Sum pooling ; Linear classifier

L2 normalized classification score:

 pair-wise lex similarity

 per-lex classification score

Lex Pooling Lex Classification Feature Encoding Normalized Classification Pooling

Embed nonlinearity
Similarity between two codemaps for image X and Z can be reduced

into pair-wise similarity between lexes

Kernel Trick
Replace linear kernel with more sophisticated nonlinear ones for lexes

Nonlinear kernel pooling

 where

approximated feature map

Vedaldi, PAMI 2012

Nonlinear kernel pooling

 where

approximated feature map

linear classifier

local nonlinear kernel pooling on each lex

global sum pooling

Vedaldi, PAMI 2012

Timing and memory usages

Using Fisher encoding
L2 normalized codemaps are up to 56x faster than Fisher vectors
L2 normalization for arbitrary regions is as efficient for 4-500 lexes
Computing codemaps ~600MB/image, while storing ~30MB/image

Codemap segment classification
Gavves, PAMI submitted

Codemaps
Computer vision by learning challenges involving repetitive
computations over overlapping image regions may profit
from codemaps.

Connection to convolutional networks?

Overview – Day 1

1. Introduction, types of concepts, relation to tasks, invariance
2. Observables, color, space, time, texture, Gaussian family
3. Invariance, the need, invariants, color, SIFT, Harris, HOG
4. BoW overview, what matters
5. On words and codebooks, internal and local structure, soft
assignment, synonyms, convex reduction, Fisher & VLAD
6. Object and scene classification, recap chapters 1 to 5.
7. Support vector machine, linear, nonlinear, kernel trick.
8. Codemaps, L2-norm for regions, nonlinear kernel pooling.

Tomorrow
Laurens van der Maaten on

1.  Pictorial structures
2.  Latent and Structured SVMs
3.  Convolutional networks

