

Learning using attributes

Thomas Mensink

Computer Vision by Learning, March 28th 11:30-12:15

Image Classification: Visual examples

Which image shows an axolotl?

Image Classification: Visual examples

Which image shows an axolotl?

Traindata:

Image Classification: Visual examples

Which image shows an axolotl?

Traindata:

We can classify based on visual examples

Image Classification: Textual descriptions

Which image shows an aye-aye?

Image Classification: Textual descriptions

Which image shows an aye-aye?

Description, Aye-aye ...

- is nocturnal
- lives in trees
- has large eyes
- has long middle fingers

Image Classification: Textual descriptions

Which image shows an aye-aye?

Description, Aye-aye ...

- is nocturnal
- lives in trees
- has large eyes
- has long middle fingers

We can classify based on textual descriptions

Attribute-Based Classification

Definition

Classification using a *class description* in terms of semantic properties or *attributes*

Attribute-Based Classification: Properties

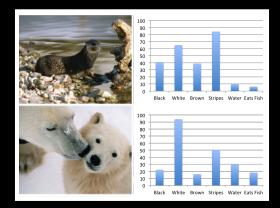
Semantic interpretable representation

Dimension reduction:

- 1. high-dimensional low-level features
- 2. low-dimensional semantic representation

Introduction

Attribute-Based Classification: Requirements



- Vocabulary of Attributes and Attribute-to-class Mapping
- Attribute predictors
- Learning model to make decision

Zero-shot recognition

- **Goal:** Classify images into classes which we have never seen
- Assumption 1: Text descriptions of unseen+related classes
- Assumption 2: Visual examples from related classes.

Zero-shot recognition (2)

- 1. Vocabulary of attributes and class descriptions: Aye-ayes have properties X, and Y, but not Z
- 2. Train classifiers for each attibute X, Y, Z. From visual examples of related classes
- 3. Make image attributes predictions:

$$P(X|img) = 0.8$$

 $P(Y|img) = 0.3$

4. Combine into decision: this image is not an Aye-aye

Zero-shot recognition (2)

- 1. Vocabulary of attributes and class descriptions: Aye-ayes have properties X, and Y, but not Z
- 2. Train classifiers for each attibute X, Y, Z. From visual examples of related classes
- 3. Make image attributes predictions:

$$P(X|img) = 0.8$$

 $P(Y|img) = 0.3$
 $P(Z|img) = 0.6$

4. Combine into decision: this image is not an Aye-aye

Zero-shot recognition (2)

- 1. Vocabulary of attributes and class descriptions: Aye-ayes have properties X, and Y, but not Z
- 2. Train classifiers for each attibute X, Y, Z. From visual examples of related classes
- 3. Make image attributes predictions:

$$P(X|img) = 0.8$$

 $P(Y|img) = 0.3$
 $P(Z|img) = 0.6$

4. Combine into decision: this image is not an Aye-aye

Zero-shot recognition (3)

- **Goal:** Classify images into classes which we have never seen
- Assumption 1: Text descriptions of unseen+related classes
- Assumption 2: Visual examples from related classes.
- Solution: Attribute-based zero-shot classification [Lampert CVPR'09]
 - 1. Construct and train attribute classifiers
 - 2. Convert image to attribute representation
 - 3. Use attribute-to-class mapping for final decision

Outline

- 1 Introduction
- 2 Attribute Vocabulary
- 3 Attribute predictors
- 4 Attribute-based classification
- 5 Fun with Attributes
- 6 Conclusions

What are good attributes?

Good attributes...

- ... are task and category dependent;
- class discriminative, but not class specific;
- ... interpretable by humans; and
- ... detectable by computers

Quiz: What are good attributes?

Possible attributes

- is grey?
- is made of atoms?
- lives in Amsterdam?
- eat fish?
- has a SIFT descriptor with empty bin 3?
- number of wheels?

Attributes for Animal Classification

AwA dataset: 30K images, 50 classes, 85 attributes [Lampert CVPR'09]

black		strong	arctic
white		weak	coastal
cyan		muscle	desert
brown			bush
gray			plains
orange			forest
red			fields
yellow			jungle
patches		fish	mountains
spots		meat	ocean
stripes		plankton	ground
furry		vegetation	water
hairless		insects	tree
toughskin		forager	cave
big	flys	grazer	
small	hops	hunter	
bulbous	swims	scavenger	
lean	tunnels	skimmer	
	walks	stalker	
	fast	newworld	
	slow	oldworld	

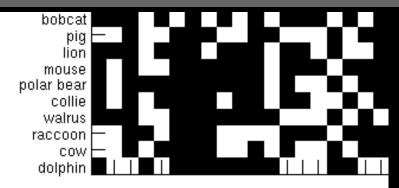
Attributes for Animal Classification

AwA dataset: 30K images, 50 classes, 85 attributes [Lampert CVPR'09]

black		strong	arctic
white		weak	coastal
cyan		muscle	desert
brown			bush
gray			plains
orange			forest
red			fields
yellow			jungle
patches		fish	mountains
spots		meat	ocean
stripes		plankton	ground
furry		vegetation	water
hairless		insects	tree
toughskin		forager	cave
big	flys	grazer	
small	hops	hunter	
bulbous	swims	scavenger	
lean	tunnels	skimmer	
	walks	stalker	
	fast	newworld	
	slow	oldworld	

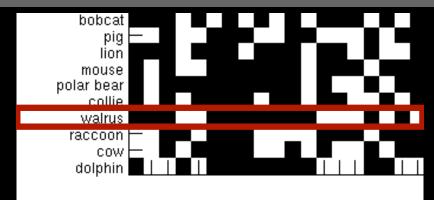
Contain attributes about: color, texture, shape, body parts, behaviour, nutrition, activity, habitat, character

Binary Attribute-to-Class mapping



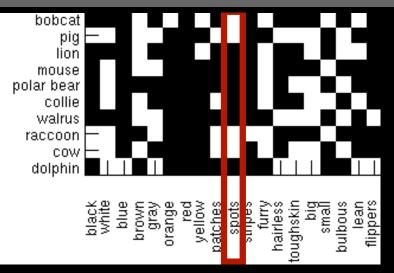
black white brown gray orange red yellow patches spots stripes furry hairless toughskin bulbous fippers

Binary Attribute-to-Class mapping



black white brown gray orange red yellow patches stripes furry hairless toughskin bulbous flippers

Binary Attribute-to-Class mapping



Deriving Attributes and Mappings

- Manual vocabulary, obtained from domain experts [Lampert CVPR'09]
- Tagged images of related classes [Wah TR'11]
- Automatic discovery from language resources [Rohrbach CVPR'10]
 - Such as: Experts descriptions, Ontologies, Wikipedia
- General classifiers / concepts [Torresani ECCV'10]
 - Such as Classemes or ImageNet
- Active Learning [Parikh CVPR'11]

How many attributes?

■ In theory k binary attributes can represent ...

■ In practice for *c* classes we need ...

How many attributes?

- In theory k binary attributes can represent ...
 2^k classes
- In practice for c classes we need ... Many attributes

3. Attribute predictors

Getting training examples

- Attribute names, without images
 - Search for attribute names on the Internet [Ferrari NIPS'07]
- Image labelled with attributes [Ferhadi CVPR'09]
- Class-specific descriptions [Lampert CVPR'09]
 - Use all images of class either as positive or as negative

Use your favourite algorithm

- SVM
- Logistic Regression
- DeepNet
- . . .

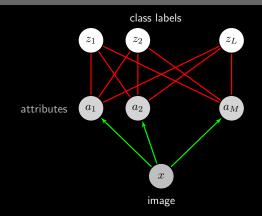
Attribute predictors

Attributes for Animal Classification

AwA dataset: 30K images, 50 classes, 85 attributes [Lampert CVPR'09]

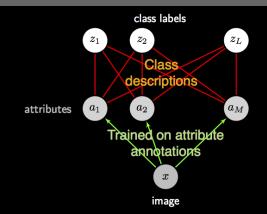
is yellow leats plankton|has buckteeth is blue is brown has paws lives in trees is smelly is big is small (AUC 92.9) (AUC 99.1) (AUC 40.4) (AUC 78.2)(AUC 62.1)(AUC 82.5) (AUC 78.8) (AUC 70.0) (AUC 79.7) (AUC 69.4)

Direct Attribute Prediction (DAP)



- Learn attribute classifiers from related classes [Lampert CVPR'09]
- Train and test classes are disjoint
- Use Attribute-to-class mapping for prediction

Direct Attribute Prediction (DAP)



- Learn attribute classifiers from related classes [Lampert CVPR'09]
- Train and test classes are disjoint
- Use Attribute-to-class mapping for prediction

DAP: Probabilistic model

Class probability:

$$p(z|\mathbf{x}) = rac{p(z)}{p(\mathbf{a}^z)} \prod_m p(a_m = a_m^z|\mathbf{x})$$

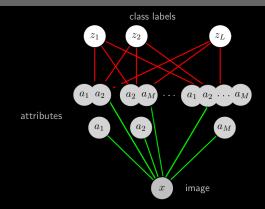
Define attribute probability:

$$p(a_m = a_m^z | \mathbf{x}) = egin{cases} p(a_m | \mathbf{x}) & ext{if } a_m^z = 1 \ 1 - p(a_m | \mathbf{x}) & ext{otherwise} \end{cases}$$

Assume equal prior p(z) and attribute prior p(a^z)
Assign a given image to class z*

$$z^* = \arg \max_{z} \prod_{m} p(a_m^z | \mathbf{x})$$

Structured DAP



- Learn attributes jointly in a structured framework [Mensink PAMI'12]
- Train and test classes are disjoint
- Use Attribute-to-class mapping for prediction

Attribute-based classification

Attribute Label Embedding (ALE)

• Limitation of direct attribute prediction:

not optimized for the final classification objective!

- DAP uses two-stage learning / predicting:
 - 1. Learn Attribute Predictors
 - 2. Use for classification
- Solution:

ALE learns for zero-shot classification [Akata CVPR'13]

Attribute-based classification

Attribute Label Embedding (ALE)

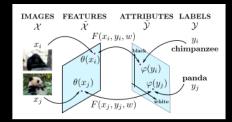
Limitation of direct attribute prediction:

not optimized for the final classification objective!

- DAP uses two-stage learning / predicting:
 - 1. Learn Attribute Predictors
 - 2. Use for classification

Solution:

ALE learns for zero-shot classification [Akata CVPR'13]



$$F(z) = \mathbf{x}^{ op} W \mathbf{a}_z$$

= $\sum_m a_{zm} \mathbf{x}^{ op} \mathbf{w}_a$

- Image features x
- Attribute vector **a**_z
- Attribute predictors W
 - Each column is an attribute predictor
- Trained to optimise zero-shot classification z
 - When trained for attribute prediction a ~>> DAP

$$F(z) = \mathbf{x}^{\top} W \mathbf{a}_z$$

= $\sum_m a_{zm} \mathbf{x}^{\top} \mathbf{w}_a$

Image features x

- Attribute vector **a**_z
- Attribute predictors W
 - Each column is an attribute predictor
- **Trained to optimise zero-shot classification** *z*
 - When trained for attribute prediction a \rightsquigarrow DAP

ALE Results

Zero-shot learning

• Train and test classes are disjoint

Evaluation of class prediction and attribute prediction

	Obj. pred.		Att. pred.	
	DAP	ALE	DAP	ALE
AWA	36.1	37.4	71.9	65.7
CUB	10.5	18.0	61.8	60.3

- ALE improves zero-shot recognition
- But, attribute prediction decreased!

ALE Results

Zero-shot learning

• Train and test classes are disjoint

Evaluation of class prediction and attribute prediction

	Obj. pred.		Att. pred.	
	DAP	ALE	DAP	ALE
AWA	36.1	37.4	71.9	65.7
CUB	10.5	18.0	61.8	60.3

ALE improves zero-shot recognition

But, attribute prediction decreased!

Discriminative Attribute Representations

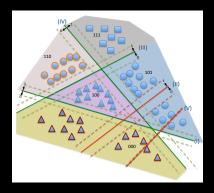
- Attributes are interpretable
- Can we learn discriminative attributes?
- Augmented Attributes [Sharmanska ECCV'12]
- Discriminative Binary Codes [Rastegari ECCV'12]

Discriminative Attribute Representations

- Attributes are interpretable
- Can we learn discriminative attributes?
- Augmented Attributes [Sharmanska ECCV'12]
- Discriminative Binary Codes [Rastegari ECCV'12]

Discriminative Attribute Representations

- Attributes are interpretable
- Can we learn discriminative attributes?
- Augmented Attributes [Sharmanska ECCV'12]
- Discriminative Binary Codes [Rastegari ECCV'12]



Relative Attributes

Problem: Binary attributes are very crude

- If mouse = small, then cat \neq small
- If elephant = large, then cat \neq large

Solution: Relative attributes [Parikh ICCV'11]

Relative Attributes

Problem: Binary attributes are very crude

- If mouse = small, then cat \neq small
- If elephant = large, then cat \neq large
- Solution: Relative attributes [Parikh ICCV'11]
- Rank images to a level of *degree*

Relative Attributes

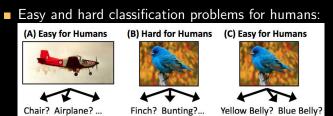
Problem: Binary attributes are very crude

- If mouse = small, then cat \neq small
- If elephant = large, then cat \neq large
- Solution: Relative attributes [Parikh ICCV'11]
- Rank images to a level of *degree*

Use distance in ranking for comparisons:

Humans in the Loop

• A computer should help the human



Humans in the Loop

Chair? Airplane? ...

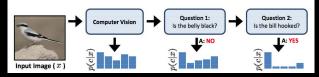
A computer should help the human

Finch? Bunting?...

Solve hard for human problems with interaction [Branson ECCV'10]

Yellow Belly? Blue Belly?

Visual 20 Questions



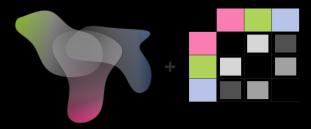
Labels as Attributes and Classes

Problem: distinction between *classes* and *attributes*

- Solution: Use labels to predict unseen labels [Mensink CVPR'14]
- Predict unseen labels based on co-occurrence with other labels

Labels as Attributes and Classes

Problem: distinction between *classes* and *attributes* Solution: Use labels to predict unseen labels [Mensink CVPR'14]
 Predict unseen labels based on co-occurrence with other label

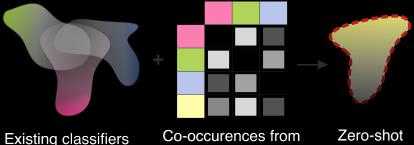


Existing classifiers

Co-occurences from Multi-Labeled Images

Labels as Attributes and Classes

Problem: distinction between *classes* and *attributes* Solution: Use labels to predict unseen labels [Mensink CVPR'14] Predict unseen labels based on co-occurrence with other labels



Multi-Labeled Images

Recognition

Can attributes be used for known classes?

And will it be any better than low-level features?

Fine-Grained Classification

Goal: Classify similar objects into specific types

Normal classification: Elephant or other animal?
 Fine-grained classification: Indian or African Elephant?

Fine-Grained Classification (2)

African

An African or Indian Elephant?

Indian

Fine-Grained Classification (3)

An African or Indian Elephant?

The African Elephant is described as the Loxodonta africana of Africa. They are very large, grey, fou-legged herbivorous mammals. They have almost hairless skin, a distinctive long, flexible, prehensile trunk. Its upper incisors form long curved tusks of ivory. African elephants have large fan-shaped ears and two fingers at the tip of its trunk, compared to only one in the Asian species.

Indian Elephant The described as Elephas is maximus of south-central Asia. They are very large, grey, four-legged herbivorous mammals. They have almost hairless skin. a distinctive long, flexible, prehensile trunk. Its upper incisors form long curved tusks of ivory. The ears of Indian elephants are significantly smaller than African elephants.

^{1.} Source: http://www.findfast.org/animals-elephants.htm

Fine-Grained Classification (3)

An African or Indian Elephant?

The African Elephant is described as the Loxodonta africana of Africa. They are very large, grey, four-legged herbivorous mammals. They have almost hairless skin, a distinctive long, flexible, prehensile trunk. Its upper incisors form long curved tusks of ivory. African elephants have large fan-shaped ears and two fingers at the tip of its trunk, compared to only one in the Asian species.

The Indian Elephant is described as Elephas maximus of south-central Asia. They are very large, grey, four-legged herbivorous mammals. They have almost hairless skin, a distinctive long, flexible, prehensile trunk. Its upper incisors form long curved tusks of ivory. The ears of Indian elephants are significantly smaller than African elephants.

^{1.} Source: http://www.findfast.org/animals-elephants.htm

Fine-Grained Classification (4)

- **Goal:** Classify similar objects into specific types
- **Observation:** Visual examples might not help to distinguish.
- Attributes: Could provide a way to use expert knowledge about the differences between visual similary types.

6. Conclusions

Take home messages

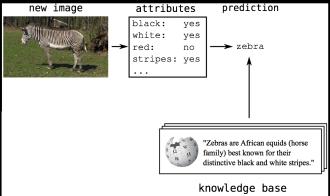
Attribute-based Classification

- 1. Vocabulary of attributes and class descriptions
 - Attributes are semantic and detectable object properties
- 2. Attribute Predictors
 - Attributes provide an intermediate semantic representation Often of lower dimensionality as low-level image features
- 3. Combining into decision
 - Allows to use expert (a priori) knowledge about classes

Take home messages: Illustration

Attribute-based Classification

- 1. Vocabulary of attributes and class descriptions
- 2. Attribute Predictors
- 3. Combining into decision



Thanks to ...

- Christoph Lampert for slides and inspiration
- The organizers (Arnold, Laurens and Cees, for asking me)
- My colleagues and former colleagues
- Authors of the papers I've used for this presentation

Learning using attributes

Questions?

Conclusions

References

- Akata et al., Label-Embedding for Attribute-Based Classification, CVPR'13
- Branson et al., Visual Recognition with Humans in the Loop, ECCV'10
- Ferrari and Zisserman, Learning Visual Attributes, NIPS'07
- Ferhadi et al, Describing Objects by Their Attributes, CVPR'09
- Lampert et al., Learning To Detect Unseen Object Classes, CVPR'09
- Li et al., Object Bank: A High-Level Image Representation, NIPS'10
- Mensink et al., Tree-structured CRF Models for Interactive Image Labeling, PAMI'12
- Mensink et al., Co-Occurrence Statistics for Zero-Shot Classification, CVPR'14
- Parikh and Grauman, Relative Attributes, ICCV'11
- Parikh and Grauman, Interactively Building a Vocabulary of Nameable Attributes, CVPR'11
- Rastegari et al., Attribute Discovery via Discriminative Binary Codes, ECCV'12
- Rohrbach et al., What Helps Where And Why? Semantic Knowledge Transfer, CVPR'10
- Sharmanska et al., Augmented Attribute Representations, ECCV'12
- Torresani et al., Efficient Object Category Recognition Using Classemes, ECCV'10
- Wah et al., The Caltech-UCSD Birds-200-2011 Dataset, TR'11