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Deep learning

» Deep learning is what people called “neural networks” in the 80s and 90s

- If you think about a kernel SVM, it basically does the following:
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Deep learning

» Deep learning is what people called “neural networks” in the 80s and 90s

- If you think about a kernel SVM, it basically does the following:
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 This is a shallow model: there’s only one latent feature representation

- A deep model learns multiple, increasingly high-level feature representations:
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Deep learning

- Central idea: build increasingly high-level representations of the data
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Deep learning

- Central idea: build increasingly high-level representations of the data
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Feedforward network

- Simple feedforward networks have the following general structure:
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Feedforward network

- Simple feedforward networks have the following general structure:
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Feedforward network

- Simple feedforward networks have the following general structure:
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* Nair & Hinton, 2010



Feedforward network

- Simple feedforward networks have the following general structure:
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Backpropagation
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- Backpropagation performs gradient descent w.r.t. the network weights:

* Rumelhart et al., 1986



Backpropagation

- Backpropagation performs gradient descent w.r.t. the network weights:
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Backpropagation
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- Backpropagation performs gradient descent w.r.t. the network weights:
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Backpropagation

- Often, we want the network to minimize the sum of squared errors:

()

- Backpropagation proceeds in two steps:

1.Propagate the error signal over weights

* Rumelhart et al., 1986

2.Compute the associated weight update




Backpropagation

- Backpropagation performs gradient descent w.r.t. the network weights:
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- Backpropagation performs gradient descent w.r.t. the network weights:

Backpropagation

* Rumelhart et al., 1986



- Backpropagation performs gradient descent w.r.t. the network weights:

Backpropagation
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Convolutional network

- Training a feedforward net on large images leads to huge numbers of weights

* Do you expect to see some structure in those weights?
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Convolutional network

- Training a feedforward net on large images leads to huge numbers of weights

* Do you expect to see some structure in those weights? Yes!

« Convolutional networks extract the . ‘

same features from different image parts

« This restricts the number of weights ‘
we need to learn

The red connections
all have the same weight.

*LeCun et al., 1989




Convolutional network

 Local pooling of features increases invariance to small image variations

*LeCun et al., 1989
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 Such local pooling also happens in SIFT, HOG, BoW, etc.
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Convolutional network

 Local pooling of features increases invariance to small image variations

 Such local pooling also happens in SIFT, HOG, BoW, etc.

- Convolutional networks generally also include such pooling layers:

Max

*LeCun et al., 1989



Convolutional network

- LeNet5 was one of the first convolutional nets (for reading cheques):
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* LeCun et al., 1989



 Erroneously recognized digits by LeNet5:

Convolutional network
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Convolutional network

- Convolutional networks indeed appear to learn increasingly complex features:
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The ILSVRC-2012 Competition

- Substantial improvement of the state-of-the-art in object recognition:

ImageNet Challenge 201 2

SuperVision Convolutional net 0.16422 j 9.8%
N 0.26172
XRCE/INRIA 0.27058 )S
o
Other stuff.... (SVMs) 1'143
3>S

0.27302 —



Recognition examples
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The ILSVRC-2012 Competition

* The winning model was a single, large convolutional network:

Seven hidden layers not counting the max-pooling layers

First five layers were convolutional; the last two fully connected

Rectified linear units were used as activation function everywhere

Model used a competitive normalization trick: suppress hidden activities when
nearby units have stronger activities to deal with intensity variations

Total number of 80 million parameters



The ILSVRC-2012 Competition
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Regularization

- Convolutional networks have tons of parameters: prone to overfitting
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Regularization

Convolutional networks have tons of parameters: prone to overfitting

Simple solution is to use weight decay: penalize L2-norm of network weights

Alternative, better way to regularize such networks is via dropout:

- Randomly switch off some hidden units during forward pass

Moreover, train model on slightly warped positive examples:




Some more examples

container ship

motor scooter

mite container ship motor scooter ledpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
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grille mushroom cherry Madagascar cat
~ convertible agaric dalmatiah squirrel monkey
| grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey




Retrieval using convolutional net
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Implementing a convolutional net

- Convolutional networks perform many convolutions and matrix multiplications

« These are very fast on GPUs (up to 100 times faster)

- GPU implementations (and Big Data) are essential in the recent successes of
deep learning and convolutional nets



Implementing a convolutional net

- Convolutional networks perform many convolutions and matrix multiplications

« These are very fast on GPUs (up to 100 times faster)

- GPU implementations (and Big Data) are essential in the recent successes of
deep learning and convolutional nets

- Libraries for building deep (convolutional) nets: Torch7, eblearn,
Theano, Caffe



Demonstration

- http://horatio.cs.nyu.edu

Image Classifier Demo Demo  About  Terms

Image Classifier Demo K2

Upload your images to have them classified by a machine! Upload multiple images using the button below or dropping them on this
page. The predicted objects will be refreshed automatically. Images are resized such that the smallest dimension becomes 256, then
the center 256x256 crop is used. More about the demo can be found here .

+ Upload Images [T — Show help tips

()| agree to the Terms of Use

Demo Notes

« |f your images have objects that are not in the 1,000 categories of ImageNet, the model will not know about them.

« Other objects can be added from all 20,000+ ImageNet categories (it may be slow to load the autocomplete results...just wait a little).
+ The maximum file size for uploads in this demo is 10 MB.

« Only image files (JPEG, JPG, GIF, PNG) are allowed in this demo .

« You can drag & drop files from your desktop on this webpage with Google Chrome, Mozilla Firefox and Apple Safari.

« Some mobile browsers are known to work, others will not. Try updating your browser or contact us with the problem.

« All images for your current IP and browsing session are shown above and not shown to others.

« This demo is powered by research out of New York University. Click here to find out more

« [f you encounter problems, please contact zeiler@cs.nyu.edu

Demo created by: Matthew Zeiler



Questions?



