Convolutional networks

Laurens van der Maaten

]
TUDelft

Deep learning

» Deep learning is what people called “neural networks” in the 80s and 90s

- If you think about a kernel SVM, it basically does the following:

Linear

Nonlinear | |
| transformation |

 transformation |

Deep learning

» Deep learning is what people called “neural networks” in the 80s and 90s

- If you think about a kernel SVM, it basically does the following:

. Nonlinear | | Linear |
 transformation | | transformation |

* This is a shallow model: there’s only one latent feature representation

Deep learning

» Deep learning is what people called “neural networks” in the 80s and 90s

- If you think about a kernel SVM, it basically does the following:

Linear

Nonlinear ,‘ |
{ transformation |

 transformation |

 This is a shallow model: there’s only one latent feature representation

- A deep model learns multiple, increasingly high-level feature representations:

Nonlinear _‘
transformation |
| SRSOP— —

Linear

Nonlinear |
transformation |

' transformation |

St

Linear {
{ transformation |

Nonlinear
 transformation |

,. Linear |
{ transformation

Deep learning

- Central idea: build increasingly high-level representations of the data

very high level representation:
MAN]| |SITTING

A

... etc ...

A

slightly higher level representation

raw input vector representation:

A’=|23]19|20 18

Deep learning

- Central idea: build increasingly high-level representations of the data

very high level representation:
MAN| [SITTING

‘ ﬁ ~10M Latency

(IT representation)

A B
. ete ... s, AIT ~100ms
~16 M
I T TT
7a sTP, CIT ~90 ms
, = ~17M
. . . ! ~80
slightly higher level representation (& E EI . o
o\
r
‘ o] oms
. . . [PIP | [
raw 1put vector representation: / S
-— o = = ~60ms
2=[23[19]20 18 O\
. ~ ”,v —— = - H Retina - ~37 M (V1 representation)
1% A e 3 v : ~50ms
~190 M
LN ﬁ ~1M (LGN representation) ~40ms

—— Q ~1M (RCG representation)

Feedforward network

- Simple feedforward networks have the following general structure:

@,

y

W;

51‘4\\\\
4 (
MV'&#\&Q&\\
POIX KEA—
B

XK

VX AT N
PSR OHOKR
BT AENSS

"V 4’« 4/401
DX PR RIS

Feedforward network

- Simple feedforward networks have the following general structure:

@,

y

r, there is some

non-linear activation function

- At every laye

W;

TV OT

+2.0 71

=20 T

AN
VAN AV AV
DIIX K,
RRSIAK <%
SSOCK K
V‘PQ/

Feedforward network

- Simple feedforward networks have the following general structure:

@,

Q

R<7
SO
1/ 25

3 2 - -
> 2 < c =
- T
O q
E S
o O
n C
9 = .
n "
3 _
O S
._ht.m L_ | | . |
r.,._u = o o o o
o8 & F 7 R T
T —
- 3 _
o S
> T
O c
+— O
< C =

* Nair & Hinton, 2010

Feedforward network

- Simple feedforward networks have the following general structure:

NSESE 72
RS
SRS KT
DX »MQ\N\PI.
S
ERSRIEZX <3S
RSO KR

BRIAELX
b 0\\ //'
ORI
ST AN
XSS
_SN»Q‘WJ'@/‘/

@,

o
1> W
N
N\
P
2 0 |
dS
em._hl.ul y
neu
= .
© 9% T
0N HE g
e ==
£250 |
Qo C
s Ez* @)
T EH L
Z E 0 ®

Backpropagation

1 X)

1 + exp(—

h; = f1(W]x) =

NONTA
PRSI XK
SR IEZX 33
& 370 0, Yo
.rébw%h»bvnbﬁ"

N \/

@,

y
W;

- Backpropagation performs gradient descent w.r.t. the network weights:

* Rumelhart et al., 1986

Backpropagation

- Backpropagation performs gradient descent w.r.t. the network weights:

= —

"

TW2 o
|1 _

@F — | —

I_I

T +

[~
n [
= "
= =
2 2
[[
A —
~ =
< <

VNW 74

S
£ /X7
2 OEK
X XX

* Rumelhart et al., 1986

Backpropagation

@,

y
W;

- Backpropagation performs gradient descent w.r.t. the network weights:

N) .
=
TW3 TW2 TXl
2 : 3
3 &) "
l—' e
+ . +
— —
__ n __
o 1) e
& 2 2
I | |
> P E
<€ < <

* Rumelhart et al., 1986

Backpropagation

- Often, we want the network to minimize the sum of squared errors:

()

- Backpropagation proceeds in two steps:

1.Propagate the error signal over weights

* Rumelhart et al., 1986

2.Compute the associated weight update

Backpropagation

- Backpropagation performs gradient descent w.r.t. the network weights:

0fs

OW 3

)

]

y_

63:<

oC — eah

OW 3

* Rumelhart et al., 1986

0fs

OW 3

y—1)
631’12
h2) (1 — hg) o) (W3€3)

ez = (
oC
OW3
€2
oC

OKIERRS
oo
0>
oo’\’

)

W;

- Backpropagation performs gradient descent w.r.t. the network weights:

Backpropagation

* Rumelhart et al., 1986

- Backpropagation performs gradient descent w.r.t. the network weights:

Backpropagation

0fs

OW 3

)

y—y

63:<

)

oC — eah

OW 3

h2) (1 — hg) o) (W3€3)

€y =

W;

* Rumelhart et al., 1986

Convolutional network

- Training a feedforward net on large images leads to huge numbers of weights

* Do you expect to see some structure in those weights?

Convolutional network

- Training a feedforward net on large images leads to huge numbers of weights

* Do you expect to see some structure in those weights? Yes!

Convolutional network

- Training a feedforward net on large images leads to huge numbers of weights

* Do you expect to see some structure in those weights? Yes!

« Convolutional networks extract the . ‘

same features from different image parts

« This restricts the number of weights ‘
we need to learn

The red connections
all have the same weight.

*LeCun et al., 1989

Convolutional network

 Local pooling of features increases invariance to small image variations

*LeCun et al., 1989

Convolutional network

 Local pooling of features increases invariance to small image variations

 Such local pooling also happens in SIFT, HOG, BoW, etc.

* LeCun et al., 1989

Convolutional network

 Local pooling of features increases invariance to small image variations

 Such local pooling also happens in SIFT, HOG, BoW, etc.

- Convolutional networks generally also include such pooling layers:

Max

*LeCun et al., 1989

Convolutional network

- LeNet5 was one of the first convolutional nets (for reading cheques):

—— C3: f. maps 16@10x10

: feature maps . S4: f. maps 16@5x5

INPUT 6@28x28 - e 4

32x32 R S2:f. maps
6@14x14 @

")

il C5: layer ggq. TPUT

Full connection Gaussian |
Convolutions Subsampling Convolutions Subsampling Full connection

* LeCun et al., 1989

 Erroneously recognized digits by LeNet5:

Convolutional network

A A
1 |
o~ wn

TN

—- ~

Convolutional network

- Convolutional networks indeed appear to learn increasingly complex features:

High-level|
| features |

| Mid-level {
| features |

| Low-level |
, features |

i
i
A

The ILSVRC-2012 Competition

- Substantial improvement of the state-of-the-art in object recognition:

ImageNet Challenge 201 2

SuperVision Convolutional net 0.16422 j 9.8%
N 0.26172
XRCE/INRIA 0.27058)S
o
Other stuff.... (SVMs) 1'143
3>S

0.27302 —

Recognition examples

|||||
1‘1

k!Yu is “ < b plane, with i train mo..d- .Ma
W e 2* hasdansnes intn and listan

cheetah ~__ buliet train hand glass
cheet+h bullet trz*in scissor*
leopard passenger car han+ glass
snow leopard subway train f+ing pan
Egyptian cat electric locomotive St+th°SC°P°

The ILSVRC-2012 Competition

* The winning model was a single, large convolutional network:

Seven hidden layers not counting the max-pooling layers

First five layers were convolutional; the last two fully connected

Rectified linear units were used as activation function everywhere

Model used a competitive normalization trick: suppress hidden activities when
nearby units have stronger activities to deal with intensity variations

Total number of 80 million parameters

The ILSVRC-2012 Competition

4M

16M
37M

442K

1.3M
884K

307K

35K

FULL CONNECT

FULL 4096/ReLU

FULL 4096/RelL U

MAX POOLING

CONYV 3x3/ReLU 256fm

CONYV 3x3ReLU 384fm

CONYV 3x3/RelLU 384fm

MAX POOLING 2x2sub

LOCAL CONTRAST NORM

CONV 11x11/ReLU 256fm

MAX POOL 2x2sub

LOCAL CONTRAST NORM

CONYV 11x11/ReLU 96fm

4Mflop

16M
37M

74M

224M
149M

223M

105M

13

34

Max

ooaling 409% 409

Max
pooling

256

Max

Stride n pooling

of 4

;

Regularization

- Convolutional networks have tons of parameters: prone to overfitting

Regularization

- Convolutional networks have tons of parameters: prone to overfitting

« Simple solution is to use weight decay: penalize L2-norm of network weights

Regularization

- Convolutional networks have tons of parameters: prone to overfitting

« Simple solution is to use weight decay: penalize L2-norm of network weights

+ Alternative, better way to regularize such networks is via dropout:

- Randomly switch off some hidden units during forward pass

Regularization

Convolutional networks have tons of parameters: prone to overfitting

Simple solution is to use weight decay: penalize L2-norm of network weights

Alternative, better way to regularize such networks is via dropout:

- Randomly switch off some hidden units during forward pass

Moreover, train model on slightly warped positive examples:

Some more examples

container ship

motor scooter

mite container ship motor scooter ledpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

B ¢ S

A .
> *

54 ¥y
grille mushroom cherry Madagascar cat
~ convertible agaric dalmatiah squirrel monkey
| grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

Retrieval using convolutional net

%

Implementing a convolutional net

- Convolutional networks perform many convolutions and matrix multiplications

« These are very fast on GPUs (up to 100 times faster)

- GPU implementations (and Big Data) are essential in the recent successes of
deep learning and convolutional nets

Implementing a convolutional net

- Convolutional networks perform many convolutions and matrix multiplications

« These are very fast on GPUs (up to 100 times faster)

- GPU implementations (and Big Data) are essential in the recent successes of
deep learning and convolutional nets

- Libraries for building deep (convolutional) nets: Torch7, eblearn,
Theano, Caffe

Demonstration

- http://horatio.cs.nyu.edu

Image Classifier Demo Demo About Terms

Image Classifier Demo K2

Upload your images to have them classified by a machine! Upload multiple images using the button below or dropping them on this
page. The predicted objects will be refreshed automatically. Images are resized such that the smallest dimension becomes 256, then
the center 256x256 crop is used. More about the demo can be found here .

+ Upload Images [T — Show help tips

()| agree to the Terms of Use

Demo Notes

« |f your images have objects that are not in the 1,000 categories of ImageNet, the model will not know about them.

« Other objects can be added from all 20,000+ ImageNet categories (it may be slow to load the autocomplete results...just wait a little).
+ The maximum file size for uploads in this demo is 10 MB.

« Only image files (JPEG, JPG, GIF, PNG) are allowed in this demo .

« You can drag & drop files from your desktop on this webpage with Google Chrome, Mozilla Firefox and Apple Safari.

« Some mobile browsers are known to work, others will not. Try updating your browser or contact us with the problem.

« All images for your current IP and browsing session are shown above and not shown to others.

« This demo is powered by research out of New York University. Click here to find out more

« [f you encounter problems, please contact zeiler@cs.nyu.edu

Demo created by: Matthew Zeiler

Questions?

