
Convolutional networks

Laurens van der Maaten

Deep learning

• Deep learning is what people called “neural networks” in the 80s and 90s

• If you think about a kernel SVM, it basically does the following:

Data Nonlinear 
transformation

Linear 
transformation

Deep learning

• Deep learning is what people called “neural networks” in the 80s and 90s

• If you think about a kernel SVM, it basically does the following:

!

• This is a shallow model: there’s only one latent feature representation

Data Nonlinear 
transformation

Linear 
transformation

Deep learning

• Deep learning is what people called “neural networks” in the 80s and 90s

• If you think about a kernel SVM, it basically does the following:

!

• This is a shallow model: there’s only one latent feature representation

• A deep model learns multiple, increasingly high-level feature representations:

Data Nonlinear 
transformation

Linear 
transformation

Data Nonlinear 
transformation

Linear 
transformation

Nonlinear 
transformation

Linear 
transformation

Nonlinear 
transformation

Linear 
transformation …

Deep learning

• Central idea: build increasingly high-level representations of the data3

Fig. 1.1 We would like the raw input image to be transformed into gradually higher levels of
representation, representing more and more abstract functions of the raw input, e.g., edges,
local shapes, object parts, etc. In practice, we do not know in advance what the “right”
representation should be for all these levels of abstractions, although linguistic concepts
might help guessing what the higher levels should implicitly represent.

Consider for example the task of interpreting an input image such as
the one in Figure 1.1. When humans try to solve a particular AI task
(such as machine vision or natural language processing), they often
exploit their intuition about how to decompose the problem into sub-
problems and multiple levels of representation, e.g., in object parts
and constellation models [138, 179, 197] where models for parts can be
re-used in different object instances. For example, the current state-
of-the-art in machine vision involves a sequence of modules starting
from pixels and ending in a linear or kernel classifier [134, 145], with
intermediate modules mixing engineered transformations and learning,

Deep learning

• Central idea: build increasingly high-level representations of the data3

Fig. 1.1 We would like the raw input image to be transformed into gradually higher levels of
representation, representing more and more abstract functions of the raw input, e.g., edges,
local shapes, object parts, etc. In practice, we do not know in advance what the “right”
representation should be for all these levels of abstractions, although linguistic concepts
might help guessing what the higher levels should implicitly represent.

Consider for example the task of interpreting an input image such as
the one in Figure 1.1. When humans try to solve a particular AI task
(such as machine vision or natural language processing), they often
exploit their intuition about how to decompose the problem into sub-
problems and multiple levels of representation, e.g., in object parts
and constellation models [138, 179, 197] where models for parts can be
re-used in different object instances. For example, the current state-
of-the-art in machine vision involves a sequence of modules starting
from pixels and ending in a linear or kernel classifier [134, 145], with
intermediate modules mixing engineered transformations and learning,

(e.g., Holmes and Gross, 1984; Horel, 1996; Schiller, 1995; Wei-
skrantz and Saunders, 1984; Yaginuma et al., 1982). While these
deficits are not always severe, and sometimes not found at all
(Huxlin et al., 2000), this variability probably depends on the
type of object recognition task (and thus the alternative visual
strategies available). For example, some (Schiller, 1995; Wei-
skrantz and Saunders, 1984), but not all, primate ventral stream
lesion studies have explicitly required invariance.
While the human homology to monkey IT cortex is not well es-

tablished, a likely homology is thecortex in andaround thehuman
lateral occipital cortex (LOC) (see Orban et al., 2004 for review).
For example, a comparison of monkey IT and human ‘‘IT’’
(LOC) shows strong commonality in the population representa-
tion of object categories (Kriegeskorte et al., 2008). Assuming
these homologies, the importance of primate IT is suggested by
neuropsychological studies of human patients with temporal
lobedamage,whichcansometimesproduce remarkably specific
object recognition deficits (Farah, 1990). Temporary functional
disruptionof parts of thehumanventral stream (using transcranial
magnetic stimulation, TMS) can specifically disrupt certain types
of object discrimination tasks, such as face discrimination
(Pitcher et al., 2009). Similarly, artificial activation of monkey IT
neurons predictably biases the subject’s reported percept of
complex objects (Afraz et al., 2006). In sum, long-term lesion
studies, temporary activation/inactivation studies, and neuro-
physiological studies (described below) all point to the central
role of the ventral visual stream in invariant object recognition.
Ventral Visual Stream: Multiple, Hierarchically
Organized Visual Areas
The ventral visual stream has been parsed into distinct visual
‘‘areas’’ based on anatomical connectivity patterns, distinctive

anatomical structure, and retinotopic mapping (Felleman and
Van Essen, 1991). Complete retinotopic maps have been re-
vealed for most of the visual field (at least 40 degrees eccentricity
from the fovea) for areas V1, V2, and V4 (Felleman and Van Es-
sen, 1991) and thus each area can be thought of as conveying
a population-based re-representation of each visually presented
image. Within the IT complex, crude retinotopy exists over the
more posterior portion (pIT; Boussaoud et al., 1991; Yasuda
et al., 2010), but retinotopy is not reported in the central and
anterior regions (Felleman and Van Essen, 1991). Thus, while
IT is commonly parsed into subareas such as TEO and TE (Jans-
sen et al., 2000; Saleem et al., 2000, 1993; Suzuki et al., 2000;
Von Bonin and Bailey, 1947) or posterior IT (pIT), central IT
(cIT), and anterior IT (aIT) (Felleman and Van Essen, 1991), it is
unclear if IT cortex is more than one area, or how the term
‘‘area’’ should be applied. One striking illustration of this is recent
monkey fMRI work, which shows that there are three (Tsao et al.,
2003) to six (Tsao et al., 2008a) or more (Ku et al., 2011) smaller
regions within IT that may be involved in face ‘‘processing’’ (Tsao
et al., 2008b) (also see Op de Beeck et al., 2008; Pinsk et al.,
2005). This suggests that, at the level of IT, behavioral goals
(e.g., object categorization) (Kriegeskorte et al., 2008; Naselaris
et al., 2009) many be a better spatial organizing principle than
retinotopic maps.
All visual cortical areas share a six-layered structure and the

inputs and outputs to each visual area share characteristic
patterns of connectivity: ascending ‘‘feedforward’’ input is
received in layer 4 and ascending ‘‘feedforward’’ output origi-
nates in the upper layers; descending ‘‘feedback’’ originates in
the lower layers and is received in the upper and lower layers
of the ‘‘lower’’ cortical area (Felleman and Van Essen, 1991).

Figure 3. The Ventral Visual Pathway
(A) Ventral stream cortical area locations in the macaque monkey brain, and flow of visual information from the retina.
(B) Each area is plotted so that its size is proportional to its cortical surface area (Felleman and Van Essen, 1991). Approximate total number of neurons (both
hemispheres) is shown in the corner of each area (M = million). The approximate dimensionality of each representation (number of projection neurons) is shown
above each area, based on neuronal densities (Collins et al., 2010), layer 2/3 neuronal fraction (O’Kusky and Colonnier, 1982), and portion (color) dedicated to
processing the central 10 deg of the visual field (Brewer et al., 2002). Approximate median response latency is listed on the right (Nowak and Bullier, 1997;
Schmolesky et al., 1998).

Neuron 73, February 9, 2012 ª2012 Elsevier Inc. 419

Neuron

Perspective

Feedforward network

• Simple feedforward networks have the following general structure:

x

ỹ

h1

h2

W1

W2

W3

Feedforward network

• Simple feedforward networks have the following general structure:

• At every layer, there is some 
non-linear activation function

x

ỹ

h1

h2

W1

W2

W3

Neurons

f(x) = tanh(x) f(x) = max(0, x)

Very bad (slow to train) Very good (quick to train)

f(x)

w
1

w
2

w
3

f(z
1
) f(z

2
) f(z

3
)

x = w
1
f(z

1
) + w

2
f(z

2
) + w

3
f(z

3
)

x is called the total input
to the neuron, and f(x)
is its output

Neurons

f(x) = tanh(x) f(x) = max(0, x)

Very bad (slow to train) Very good (quick to train)

f(x)

w
1

w
2

w
3

f(z
1
) f(z

2
) f(z

3
)

x = w
1
f(z

1
) + w

2
f(z

2
) + w

3
f(z

3
)

x is called the total input
to the neuron, and f(x)
is its output

Feedforward network

• Simple feedforward networks have the following general structure:

• At every layer, there is some 
non-linear activation function

x

ỹ

h1

h2

W1

W2

W3

* Nair & Hinton, 2010

Feedforward network

• Simple feedforward networks have the following general structure:

• Network is trained to  
minimize some loss  
between the output  
and the target:

x

ỹ

h1

h2

W1

W2

W3

C =
1

2
(y � ỹ)2

Backpropagation

• Backpropagation performs gradient descent w.r.t. the network weights:

x

ỹ

h1

h2

W1

W2

W3

h1 = f1(W
T
1 x) =

1

1 + exp(�W

T
1 x)

* Rumelhart et al., 1986

Backpropagation

• Backpropagation performs gradient descent w.r.t. the network weights:

x

ỹ

h1

h2

W1

W2

W3

h2 = f2(W
T
2 h1) =

1

1 + exp(�WT
2 h1)

h1 = f1(W
T
1 x) =

1

1 + exp(�W

T
1 x)

* Rumelhart et al., 1986

Backpropagation

• Backpropagation performs gradient descent w.r.t. the network weights:

x

ỹ

h1

h2

W1

W2

W3

h2 = f2(W
T
2 h1) =

1

1 + exp(�WT
2 h1)

ỹ = f3(W
T
3 h2) =

1

1 + exp(�WT
3 h2)

h1 = f1(W
T
1 x) =

1

1 + exp(�W

T
1 x)

* Rumelhart et al., 1986

!

!

!

• Backpropagation proceeds in two steps:

1.Propagate the error signal over weights

2.Compute the associated weight update

Backpropagation

• Often, we want the network to minimize the sum of squared errors:

x

ỹ

h1

h2

W1

W2

W3

C =
1

2
(y � ỹ)2

* Rumelhart et al., 1986

Backpropagation

• Backpropagation performs gradient descent w.r.t. the network weights:

x

ỹ

h1

h2

W1

W2

W3

e3 = (y � ỹ)
@f3
@W3

= (y � ỹ)ỹ(1� ỹ)

@C

@W3
= e3h2

* Rumelhart et al., 1986

Backpropagation

• Backpropagation performs gradient descent w.r.t. the network weights:

x

ỹ

h1

h2

W1

W2

W3

e2 = h2 � (1� h2) � (W3e3)

e3 = (y � ỹ)
@f3
@W3

= (y � ỹ)ỹ(1� ỹ)

@C

@W3
= e3h2

@C

@W2
= eT2 h1

* Rumelhart et al., 1986

Backpropagation

• Backpropagation performs gradient descent w.r.t. the network weights:

x

ỹ

h1

h2

W1

W2

W3

e2 = h2 � (1� h2) � (W3e3)

e3 = (y � ỹ)
@f3
@W3

= (y � ỹ)ỹ(1� ỹ)

@C

@W3
= e3h2

@C

@W2
= eT2 h1

@C

@W1
= e

T
1 x

e1 = h1 � (1� h1) � (W2e2)

* Rumelhart et al., 1986

Convolutional network

• Training a feedforward net on large images leads to huge numbers of weights

• Do you expect to see some structure in those weights?

Convolutional network

• Training a feedforward net on large images leads to huge numbers of weights

• Do you expect to see some structure in those weights? Yes!

Convolutional network

• Training a feedforward net on large images leads to huge numbers of weights

• Do you expect to see some structure in those weights? Yes!

• Convolutional networks extract the  
same features from different image parts

• This restricts the number of weights 
we need to learn

The red connections
all have the same weight.

* LeCun et al., 1989

Convolutional network

• Local pooling of features increases invariance to small image variations

* LeCun et al., 1989

Convolutional network

• Local pooling of features increases invariance to small image variations

• Such local pooling also happens in SIFT, HOG, BoW, etc.

* LeCun et al., 1989

Convolutional network

• Local pooling of features increases invariance to small image variations

• Such local pooling also happens in SIFT, HOG, BoW, etc.

• Convolutional networks generally also include such pooling layers:

Local pooling

Max

* LeCun et al., 1989

Convolutional network

• LeNet5 was one of the first convolutional nets (for reading cheques):

* LeCun et al., 1989

Convolutional network

• Erroneously recognized digits by LeNet5:

Convolutional network

• Convolutional networks indeed appear to learn increasingly complex features:

Y LeCun
MA Ranzato

Deep Learning = Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature
transformation

Trainable
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Y LeCun
MA Ranzato

Deep Learning = Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature
transformation

Trainable
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Low-level 
features

Mid-level 
features

High-level 
features

ILSVRC&2012&Data&
Test$images$for$“Hammer”$
$
&
&
&

The ILSVRC-2012 Competition

• Substantial improvement of the state-of-the-art in object recognition:

ImageNet Challenge 2012

600K bounding boxes
1.2M labeled images

14M unlabeled images
1000 classes

Classification: Comparison

Submission Method Error rate

SuperVision DBN 0.16422

ISI FV: SIFT, LBP, GIST, CSIFT 0.26172

XRCE/INRIA
FV: SIFT and colour

1M-dim features
0.27058

OXFORD_VGG

FV: SIFT and colour
270K-dim features
(classification only,

no fusion)

0.27302

1.1%

• Saturation of FV-based approaches

• Adding more off-the-shelf features or increasing
dimensionality does not help much

9.8% Convolutional net

Other stuff... (SVMs)

Recognition examples

The ILSVRC-2012 Competition

• The winning model was a single, large convolutional network:

• Seven hidden layers not counting the max-pooling layers

• First five layers were convolutional; the last two fully connected

• Rectified linear units were used as activation function everywhere

• Model used a competitive normalization trick: suppress hidden activities when
nearby units have stronger activities to deal with intensity variations

• Total number of 80 million parameters

The ILSVRC-2012 Competition
Y LeCun

MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

CONV 11x11/ReLU 96fm

LOCAL CONTRAST NORM

MAX POOL 2x2sub

FULL 4096/ReLU

FULL CONNECT

CONV 11x11/ReLU 256fm

LOCAL CONTRAST NORM

MAX POOLING 2x2sub

CONV 3x3/ReLU 384fm

CONV 3x3ReLU 384fm

CONV 3x3/ReLU 256fm

MAX POOLING

FULL 4096/ReLU

Won the 2012 ImageNet LSVRC. 60 Million parameters, 832M MAC ops
4M

16M

37M

442K

1.3M

884K

307K

35K

4Mflop

16M

37M

74M

224M

149M

223M

105M

Regularization

• Convolutional networks have tons of parameters: prone to overfitting

Regularization

• Convolutional networks have tons of parameters: prone to overfitting

• Simple solution is to use weight decay: penalize L2-norm of network weights

Regularization

• Convolutional networks have tons of parameters: prone to overfitting

• Simple solution is to use weight decay: penalize L2-norm of network weights

• Alternative, better way to regularize such networks is via dropout:

• Randomly switch off some hidden units during forward pass

Regularization

• Convolutional networks have tons of parameters: prone to overfitting

• Simple solution is to use weight decay: penalize L2-norm of network weights

• Alternative, better way to regularize such networks is via dropout:

• Randomly switch off some hidden units during forward pass

• Moreover, train model on slightly warped positive examples:

Some more examples

Retrieval using convolutional net

Retrieval experiments
First column contains query images from ILSVRC-2010 test set, remaining
columns contain retrieved images from training set.

Implementing a convolutional net

• Convolutional networks perform many convolutions and matrix multiplications

• These are very fast on GPUs (up to 100 times faster)

• GPU implementations (and Big Data) are essential in the recent successes of
deep learning and convolutional nets

Implementing a convolutional net

• Convolutional networks perform many convolutions and matrix multiplications

• These are very fast on GPUs (up to 100 times faster)

• GPU implementations (and Big Data) are essential in the recent successes of
deep learning and convolutional nets

!

• Libraries for building deep (convolutional) nets: Torch7, eblearn,
Theano, Caffe

Demonstration

• http://horatio.cs.nyu.edu

Questions?

