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- How can we train an object detector with a pictorial structures model?

« Let’s first consider the standard linear SVM:
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- Latent SVM introduces latent variables modeling part locations:
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- To compute the loss, we need to find the best part locations:
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 Recall that the score of a pictorial-structures model is given by:

s(Lizo,yo, -z yvy) = wo oo, yo) + > wid(Lag,yi) + Y dijdales — x5, y: — yj)
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- We can now “simply” compute the gradient of the loss w.r.t. parameters

* Felzenszwalb et al., 2010



Latent SVM

- The gradient of the latent SVM objective takes the form:
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- Where we have defined the optimal part locations:
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 |llustration of a learned car detector:

* Felzenszwalb et al., 2010
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set of all structures: label sequences, graphs,
image segmentations, object locations, etc.
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Structured SVM

* In detection, we aim to learn a function from image to bounding box + label
* Input x = image

« Qutput y = (label, bounding box)

« Assume we have a score
function for a structure v:

s(y;x, ©)

* For instance, the score a pictorial-structures model assigns to the bounding box
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Structured SVM

- Structured SVMs minimize the following loss function:

((©;x,y) max s(9;%,0) — s(y;x,0) + Ay, y)]

AN

highest-scoring score of score of margin /
alternative alternative ground-truth  task loss

 Learning amounts to minimizing the structured SVM loss w.r.t. parameters:
O©* = argmin £(O; x, y)
©

- Lower score of highest-scoring alternative relative to the ground-truth score

* Tsochantaridis et al., 2005
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- The task loss can take different forms depending on the application

 For instance, when training an object detector: A(y, Q)

-
YNy

yUy

small margin: large margin:

Much overlap with target: slightly lower score than ground truth

No overlap with target: much lower score than ground truth



Structured SVM

» Structured SVMs minimize the following loss function:

((O;x,y) = max s(9;%,0) — s(y;%x,0) + Ay, y)]



Structured SVM

» Structured SVMs minimize the following loss function:

((O;x,y) = max s(9;%,0) — s(y;%x,0) + Ay, 9)]

- The standard binary-classification SVM is a special case where:

ye{—1,+1} ) 0 iff y = 4
A — " /
s(y;x,0) =y0 ' x (. 9) {1 iff y #9



Structured SVM

» Structured SVMs minimize the following loss function:

((O;x,y) = max s(9;%,0) — s(y;%x,0) + Ay, y)]

- The standard binary-classification SVM is a special case where:

ye{—1,+1} ) 0 iff y = 4
A — " /
s(y;x,0) =y0 ' x (. 9) {1 iff y #9

« Working out the loss leads to:

max [0 'x —y0 'x +0,(1-y)0'x —y0 ' 'x + 1] =
2 max [O, 1 — 1y@TX]



Structured SVM

» Structured SVMs minimize the following loss function:

((O;x,y) = max s(9;%,0) — s(y;%x,0) + Ay, 9)]

- The standard binary-classification SVM is a special case where:

ye{—1,+1} ) 0 iff y = 4
A — " /
s(y;x,0) =y0 ' x (. 9) {1 iff y #9

« Working out the loss leads to:
max [y@TX —y0'x+0,(1-3)0'x—y0 " 'x+ 1] =
2 max [O, 1 — 1y@TX] <“———___ hinge loss for

binary classification



Structured SVM

» The gradient of structured SVM loss w.r.t. the model parameters is given by:

Veol(0;x,y) = Vos(y™;x,0) — Veos(y; x,0)

* where: y* = argmax (S(?j; X, @) -+ A(y, f&))
Y



Structured SVM

- The gradient of structured SVM loss w.r.t. the model parameters is given by:

v@f(@, X, y) — V@S(y*a X, @) _ VQS(y, X, @)

- where: y* = argmax (S(?j; X, @) -+ A(ya f&))
Y

- This is a very natural way of saying:
« The positive example is the detection with the highest score

« The negative example is the detection with the second-highest score



Structured SVM: Application

* In detection, we aim to learn a function from image to bounding box + label

* Input x = image; output y = (label, bounding box)




Structured SVM: Application

* Training data for this problem takes the same form:




Structured SVM: Application

« To train a structured SVM, we need to define the task loss:

NOT cow

A(v. ) = overlap crr.
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Structured SVM: Application

- How do we compute the loss (and the loss gradient) in this application?

((0;x,y) = max [s(7;x,0) — 5(y;X,0) + Ay, 7)]

Y

« Perform sliding-window search with the current detector!

 For other structures, we may have efficient ways to do maximization, too:

« For instance, the Viterbi algorithm searches over all label sequences



Structured SVM: Applications
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- Advantage of structured training: strongly overlapping bounding boxes may
have almost the same score as the ground-truth

* Blaschko & Lampert, 2008



Structured SVM: Applications

« Structured output track
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*Smeulders et al., 2014

er (Struck; Hare et al., 2010) currently state-of-the-art:
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Questions?



