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Latent SVM

• How can we train an object detector with a pictorial structures model?


• Let’s first consider the standard linear SVM: 

!

!

• Latent SVM introduces latent variables modeling part locations:
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• To compute the loss, we need to find the best part locations: 

!

!

• Recall that the score of a pictorial-structures model is given by:
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Latent SVM

• To compute the loss, we need to find the best part locations: 

!
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• Recall that the score of a pictorial-structures model is given by:


!

• We can now “simply” compute the gradient of the loss w.r.t. parameters
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Latent SVM

• The gradient of the latent SVM objective takes the form:


!

• Where we have defined the optimal part locations:
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Learned model

• Illustration of a learned car detector:
13

(a)

(b)

(c)

Fig. 5. (a) and (b) are the initial root filters for a car model (the result of Phase 1 of the initialization process). (c) is the
initial part-based model for a car (the result of Phase 3 of the initialization process).

the feature vector C(i, j). We can write these factors as
N

�,�

(i, j) with �, � 2 {�1, 1},

N
�,�

(i, j) = (||C(i, j)||2 + ||C(i + �, j)||2+
||C(i, j + �)||2 + ||C(i + �, j + �)||2) 1

2 . (26)

Each factor measures the “gradient energy” in a square
block of four cells containing (i, j).

Let T
↵

(v) denote the component-wise truncation of a
vector v by ↵ (the i-th entry in T

↵

(v) is the minimum
of the i-th entry of v and ↵). The HOG feature map is
obtained by concatenating the result of normalizing the
cell-based feature map C with respect to each normal-
ization factor followed by truncation,

H(i, j) =

0

BB@

T
↵

(C(i, j)/N�1,�1(i, j))
T

↵

(C(i, j)/N+1,�1(i, j))
T

↵

(C(i, j)/N+1,+1(i, j))
T

↵

(C(i, j)/N�1,+1(i, j))

1

CCA (27)

Commonly used HOG features are defined using p =

9 contrast insensitive gradient orientations (discretized
with B2), a cell size of k = 8 and truncation ↵ = 0.2.
This leads to a 36-dimensional feature vector. We used
these parameters in the analysis described below.

6.2 PCA and Analytic Dimensionality Reduction
We collected a large number of 36-dimensional HOG
features from different resolutions of a large number
of images and performed PCA on these vectors. The
principal components are shown in Figure 6. The results
lead to a number of interesting discoveries.

The eigenvalues indicate that the linear subspace
spanned by the top 11 eigenvectors captures essentially
all the information in a HOG feature. In fact we obtain
the same detection performance in all categories of the
PASCAL 2007 dataset using the original 36-dimensional
features or 11-dimensional features defined by projec-
tion to the top eigenvectors. Using lower dimensional
features leads to models with fewer parameters and
speeds up the detection and learning algorithms. We
note however that some of the gain is lost because we
need to perform a relatively costly projection step when
computing feature pyramids.

Recall that a 36-dimensional HOG feature is defined
using 4 different normalizations of a 9 dimensional his-
togram over orientations. Thus a 36-dimensional HOG
feature is naturally viewed as a 4 ⇥ 9 matrix. The top
eigenvectors in Figure 6 have a very special structure:
they are each (approximately) constant along each row
or column of their matrix representation. Thus the top
eigenvectors lie (approximately) in a linear subspace
defined by sparse vectors that have ones along a single
row or column of their matrix representation.

Let V = {u1, . . . , u9} [ {v1, . . . , v4} with

u
k

(i, j) =

⇢
1 if j = k
0 otherwise (28)

v
k

(i, j) =

⇢
1 if i = k
0 otherwise (29)

We can define a 13-dimensional feature by taking the
dot product of a 36-dimensional HOG feature with each
u

k

and v
k

. Projection into each u
k

is computed by sum-
ming over the 4 normalizations for a fixed orientation.
Projection into each v

k

is computed by summing over 9
orientations for a fixed normalization.4

As in the case of 11-dimensional PCA features we
obtain the same performance using the 36-dimensional
HOG features or the 13-dimensional features defined
by V . However, the computation of the 13-dimensional
features is much less costly than performing projections
to the top eigenvectors obtained via PCA since the u

k

and v
k

are sparse. Moreover, the 13-dimensional features
have a simple interpretation as 9 orientation features
and 4 features that reflect the overall gradient energy
in different areas around a cell.

We can also define low-dimensional features that are
contrast sensitive. We have found that performance on
some object categories improves using contrast sensitive
features, while some categories benefit from contrast
insensitive features. Thus in practice we use feature vec-
tors that include both contrast sensitive and insensitive
information.

4. The 13-dimensional feature is not a linear projection of the 36-
dimensional feature into V because the uk and vk are not orthogonal.
In fact the linear subspace spanned by V has dimension 12.

* Felzenszwalb et al., 2010



Learned model
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Fig. 9. Some of the models learned on the PASCAL 2007 dataset.

* Felzenszwalb et al., 2010
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• A binary SVM makes a prediction by finding the highest-scoring label: 

!

• Structured SVMs are generalization that searches for highest-scoring output:

f(x|⇥) = argmax
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y2{�1,+1}
y⇥>

x

f(x|⇥) = argmax

y2Y
s(y;x,⇥)

set of all structures: label sequences, graphs,  
image segmentations, object locations, etc.



Structured SVM

• In detection, we aim to learn a function from image to bounding box + label


• Input x = image 


• Output y = (label, bounding box)

The problem

• Goal. Learn a function from an image to a bounding box and label.

• input x = image

• output y = (label, bounding box)
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Structured SVM

• In detection, we aim to learn a function from image to bounding box + label


• Input x = image 


• Output y = (label, bounding box) 
 

• Assume we have a score  
function for a structure y: 

• For instance, the score a pictorial-structures model assigns to the bounding box

The problem

• Goal. Learn a function from an image to a bounding box and label.

• input x = image

• output y = (label, bounding box)
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`(⇥;x, y) = max

ŷ
[s(ŷ;x,⇥)� s(y;x,⇥) +�(y, ŷ)]
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ŷ
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Structured SVM

• Structured SVMs minimize the following loss function:


!

!

!

• Learning amounts to minimizing the structured SVM loss w.r.t. parameters:
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Structured SVM

• Structured SVMs minimize the following loss function:


!

!

!

• Learning amounts to minimizing the structured SVM loss w.r.t. parameters: 
 

• Lower score of highest-scoring alternative relative to the ground-truth score
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ŷŷ
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Structured SVM

• The task loss can take different forms depending on the application


• For instance, when training an object detector: 
 

!

!

• Much overlap with target: slightly lower score than ground truth


• No overlap with target: much lower score than ground truth

small margin: large margin:
ŷŷ
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y
y



Structured SVM

• Structured SVMs minimize the following loss function:

`(⇥;x, y) = max

ŷ
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Structured SVM

• Structured SVMs minimize the following loss function:
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• The standard binary-classification SVM is a special case where:
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• Structured SVMs minimize the following loss function:
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• The standard binary-classification SVM is a special case where: 

!

• Working out the loss leads to:
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y 2 {�1,+1}
s(y;x,⇥) = y⇥>

x

max

⇥
y⇥>

x� y⇥>
x+ 0, (1� y)⇥>

x� y⇥>
x+ 1

⇤
=

2max

⇥
0, 1� 1y⇥>

x

⇤



Structured SVM

• Structured SVMs minimize the following loss function:
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• The standard binary-classification SVM is a special case where: 

!

• Working out the loss leads to:
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Structured SVM

• The gradient of structured SVM loss w.r.t. the model parameters is given by:


!

• where:

r⇥`(⇥;x, y) = r⇥s(y
⇤;x,⇥)�r⇥s(y;x,⇥)

y⇤ = argmax

ŷ
(s(ŷ;x,⇥) +�(y, ŷ))



Structured SVM

• The gradient of structured SVM loss w.r.t. the model parameters is given by:


!

• where: 

• This is a very natural way of saying: 


• The positive example is the detection with the highest score


• The negative example is the detection with the second-highest score

r⇥`(⇥;x, y) = r⇥s(y
⇤;x,⇥)�r⇥s(y;x,⇥)

y⇤ = argmax

ŷ
(s(ŷ;x,⇥) +�(y, ŷ))



Structured SVM: Application

• In detection, we aim to learn a function from image to bounding box + label


• Input x = image; output y = (label, bounding box)

The problem

• Goal. Learn a function from an image to a bounding box and label.

• input x = image

• output y = (label, bounding box)
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Structured SVM: Application

• Training data for this problem takes the same form:

Training data

• Pairs (x1, y1), ...., (xN, yN) :

(image, label + bounding box)

27

cow

NOT cow

NOT cow

cow

Tuesday, 3 February 2009

The problem

• Goal. Learn a function from an image to a bounding box and label.

• input x = image

• output y = (label, bounding box)

26

cow

Tuesday, 3 February 2009

Training data

• Pairs (x1, y1), ...., (xN, yN) :

(image, label + bounding box)

27

cow

NOT cow

NOT cow

cow

Tuesday, 3 February 2009

Training data

• Pairs (x1, y1), ...., (xN, yN) :

(image, label + bounding box)

27

cow

NOT cow

NOT cow

cow

Tuesday, 3 February 2009



Structured SVM: Application

• To train a structured SVM, we need to define the task loss:



Structured SVM: Application

• How do we compute the loss (and the loss gradient) in this application?

`(⇥;x, y) = max

ŷ
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• How do we compute the loss (and the loss gradient) in this application?
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• Perform sliding-window search with the current detector!

`(⇥;x, y) = max

ŷ
[s(ŷ;x,⇥)� s(y;x,⇥) +�(y, ŷ)]



Structured SVM: Application

• How do we compute the loss (and the loss gradient) in this application?


!

• Perform sliding-window search with the current detector!


!

• For other structures, we may have efficient ways to do maximization, too:


• For instance, the Viterbi algorithm searches over all label sequences

`(⇥;x, y) = max

ŷ
[s(ŷ;x,⇥)� s(y;x,⇥) +�(y, ŷ)]



Structured SVM: Applications

!

!

!

!

!

• Advantage of structured training: strongly overlapping bounding boxes may 
have almost the same score as the ground-truth

Learning to Localize Objects with Structured Output Regression 11

Fig. 5. Precision–recall curves and example detections for the PASCAL VOC bicycle,
bus and cat category (from left to right). Structured training improves both, precision
and recall. Red boxes are counted as mistakes by the VOC evaluation routine, because
they are too large or contain more than one object.

Object Categorization in 2006. The dataset contains ground truth in the form of
bounding boxes that were generated manually. Since the images contain natural
scenes, many contain more than one object class or several instances of the same
class. Evaluation is performed based on precision-recall curves for which the
system returns a set of candidate boxes and confidence scores for every object
category. Detected boxes are counted as correct if their area overlap with a
ground truth box exceeds 50% [17].

We use the binary and the structured procedures to train localization systems
for all 10 categories. Parameter selection is done separately for each class, choos-
ing the parameter C and number of boxes to sampled based on the performance
when trained on the train and evaluated on the val part of the data. The range
of parameters is identical to the TU Darmstadt cow dataset. The resulting sys-
tem is then retrained on the whole train/val portion, excluding those which are
marked as difficult in the ground truth annotation. For the structured training,
we only train on the training images that contained the object to be detected,
while for the binary training negative image regions were sampled from images
with and without the object present.

TheVOCdataset is strongly unbalanced, and inper-class object detection,most
test images do not contain the objects to be detected at all. This causes the sliding
window detection scores to become an unreliable measure for ranking. Instead, we
calculate confidence scores for each detection from the output of a separate SVM
with χ2-kernel, based on the image and box cluster histograms.The relative weight
between box and image kernel is determined by cross-validation. The same result-
ing classifier is used to rank the detection outputs of both training methods.

* Blaschko & Lampert, 2008



Structured SVM: Applications

• Structured output tracker (Struck; Hare et al., 2010) currently state-of-the-art:
IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 31

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Video

F
−

s
c
o
re

 

 

NCC(0.57)

KLT(0.47)

KAT(0.43)

FRT(0.52)

MST(0.36)

LOT(0.52)

IVT(0.55)

TAG(0.38)

TST(0.62)

TMC(0.15)

ACT(0.27)

L1T(0.56)

L1O(0.60)

FBT(0.64)

HBT(0.49)

SPT(0.47)

MIT(0.57)

TLD(0.61)

STR(0.66)

Fig. 7: Survival curves of the trackers with respect to F -scores. Also indicated in the legend are

the average F -scores. The shaded area in the upper right corner represents the fraction of the

videos in which none of the nineteen trackers was able to track objects in any of the videos.

The shaded area on the left bottom represents the fraction of the videos in which all trackers

were able to track correctly.

TST selects the best of many small trackers; and TLD combines tracking with detection. The

target region representation, the appearance representation, the motion model and the update

model also vary between the different trackers. Given their very different methods, it is interesting

to observe that they are all capable of tracking correctly approximately 30% of the dataset.

Number five in performance is L1T based on constrainted optimization, followed by NCC which

uses on a plain matching by correlation. This is remarkable as NCC scores 6th overall while it

was designed even before 1995.

Bounding box visualization of the nineteen trackers on all videos can be viewed from website:

http://www.alov300.org/

The overlap between survival curves is limited to neighboring curves in the vast majority of
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* Smeulders et al., 2014
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