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Introduction

• Object detection aims to find a particular object in an image


• Most popular object detectors are based on a discriminative model:


• Gather annotated image patches (positive and negative examples)


• Extract your favorite image features from these image patches 


• Train a classifier on the features to discriminate object from everything else


• Classifier is applied on candidate locations to determine object presence


• The Dalal-Triggs detector is a commonly used object detector



Dalal-Triggs detector

• Extract histograms of oriented gradients (HOG) features from image patch:


!

!

!

!

• HOG features divide an image into small (8x8) blocks, and measure the 
gradient orientations in each of the blocks using a histogram (almost like SIFT)

* Dalal & Triggs, 2005



Dalal-Triggs detector

• Different objects have different HOG features:



Dalal-Triggs detector

• Train a linear SVM on annotated images to predict object presence: 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Dalal-Triggs detector

• Train a linear SVM on annotated images to predict object presence: 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• How do we get the negative examples to train the SVM?
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Dalal-Triggs detector

• Train a linear SVM on annotated images to predict object presence: 

!

!

!

!

• How do we get the negative examples to train the SVM? Random patches!

Training:

Detection: s(I;x) = w

⇤T�(I;x)
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Dalal-Triggs detector

• HOG visualization of the SVM weights for a pedestrian detector:
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Fig. 4. The matching process at one scale. Responses from the root and part filters are computed a different
resolutions in the feature pyramid. The transformed responses are combined to yield a final score for each root
location. We show the responses and transformed responses for the “head” and “right shoulder” parts. Note how the
“head” filter is more discriminative. The combined scores clearly show two good hypothesis for the object at this scale.



Dalal-Triggs detector

• Applying the detector at each location leads to a confidence map: 
 

!

!

!

!

• Non-maxima suppression can be used to obtain the final detections
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Dalal-Triggs detector

• Example of pedestrian detections using Dalal-Triggs detector:



Pictorial structures

• What can we do when a part of the object to be detected is occluded?



Pictorial structures

• What can we do when a part of the object to be detected is occluded? 


• Exploit the fact that other parts of the object are still visible!



Pictorial structures

• What can we do when a part of the object to be detected is occluded? 


• Exploit the fact that other parts of the object are still visible!


• Pictorial structures does this by modeling objects as a constellation of parts:

Part-based representation

• Objects are decomposed into parts and spatial 
relations among parts

10

Fischler  and  Elschlager  ‘73
* Fischler & Elschlager, 1973



Deformable template models

• Defines a score function that involves parts and part deformations:Six-component car model

root filters (coarse) part filters (fine) deformation models

side view

frontal view

Global object model

s(I;x0, y0, . . . , x|V |, y|V |) = wT
0 �(I;x0, y0) +

X

i2V

wT
i �(I;xi, yi) +

X

(i,j)2E

dij�d(xi � xj , yi � yj)

* Felzenszwalb et al., 2010



Deformable template models

• Defines a score function that involves parts and part deformations:Six-component car model

root filters (coarse) part filters (fine) deformation models

side view

frontal view

Global object model Object part models

s(I;x0, y0, . . . , x|V |, y|V |) = wT
0 �(I;x0, y0) +

X

i2V

wT
i �(I;xi, yi) +

X

(i,j)2E

dij�d(xi � xj , yi � yj)

* Felzenszwalb et al., 2010



Deformable template models

• Defines a score function that involves parts and part deformations:Six-component car model

root filters (coarse) part filters (fine) deformation models

side view

frontal view

Global object model Object part models Deformation model

s(I;x0, y0, . . . , x|V |, y|V |) = wT
0 �(I;x0, y0) +

X

i2V

wT
i �(I;xi, yi) +

X

(i,j)2E

dij�d(xi � xj , yi � yj)

* Felzenszwalb et al., 2010



Deformable template models

• Defines a score function that involves parts and part deformations: 

!

!

!

!

• Deformable template models are much more robust against partial occlusions 
and deformations of non-rigid objects

Six-component car model

root filters (coarse) part filters (fine) deformation models

side view

frontal view

Global object model Object part models Deformation model
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* Felzenszwalb et al., 2010



Pictorial structures

• Find the optimal configuration of a pictorial structures (detection) as follows:

max

x0,y0,...,x|V |,y|V |
s(I;x0, y0, . . . , x|V |, y|V |)



Pictorial structures

• Find the optimal configuration of a pictorial structures (detection) as follows:
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• For squared-error deformation models, this can be done very efficiently:

max
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Pictorial structures

• Find configuration of pict. structures model by maximizing over part locations:


!

• For squared-error deformation models, this can be done very efficiently:

max
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Pictorial structures

• Find the optimal configuration of a pictorial structures (detection) as follows:


!

• For squared-error deformation models, this can be done very efficiently: 

!

!

• Hence, we have a parabola for every pixel       rooted at 

max
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Pictorial structures
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Figure 1: The distance transform as the lower envelope of n parabolas.

The main part of the algorithm is the lower envelope computation. Note that any two

parabolas defining the distance transform intersect at exactly one point. Simple algebra

yields the horizontal position of the intersection between the parabola coming from grid

position q and the one from p as,

s =
(f(p) + p2)� (f(q) + q2)

2p� 2q
.

If q < p then the parabola coming from q is below the one coming from p to the left of the

intersection point s, and above it to the right of s.

We compute the lower envelope by sequentially computing the lower envelope of the first

q parabolas, where the parabolas are ordered according to their corresponding horizontal

grid locations. The algorithm works by computing the combinatorial structure of this lower

envelope. We keep track of the structure by using two arrays. The horizontal grid location

of the i-th parabola in the lower envelope is stored in v[i]. The range in which the i-th

parabola of the lower envelope is below the others is given by z[i] and z[i + 1]. The variable

k keeps track of the number of parabolas in the lower envelope.

When considering the parabola from q, we find its intersection with the parabola from

v[k] (the rightmost parabola in the lower envelope computed so far). There are two possible

cases, as illustrated in Figure 2. If the intersection is after z[k], then the lower envelope is

modified to indicate that the parabola from q is below all others starting at the intersection

6

* Felzenszwalb & Huttenlocher, 2004



Pictorial structures

!

!

!

!

!

• It is straightforward to compute the intersection between two parabolas:
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Pictorial structures

• If                : parabola corresponding to       is below that of       left of the 
intersection, and above it right of the intersection
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* Felzenszwalb & Huttenlocher, 2004



Pictorial structures

• Maintain the lower envelope of the parabolas (parabolas and intersections)


• When adding a new parabola, there are two possibilities:

v[k]v[k-1] z[k] qs

(a)

v[k]v[k-1] z[k] qs

(b)

Figure 2: The two possible cases considered by the algorithm when adding the parabola

from q to the lower envelope constructed so far. In (a) s > z[k] while in (b) s  z[k].

2.2 Arbitrary Dimensions

Let G = {0, . . . , n � 1} ⇥ {0, . . . ,m � 1} be a two dimensional grid, and f :G!R an arbi-

trary function on the grid. The two dimensional distance transform of f under the squared

Euclidean distance is given by,

D
f

(x, y) = min
x

0
,y

0
((x� x0)2 + (y � y0)2 + f(x0, y0)).

The first term does not depend on y0 so we can rewrite this equation as,

D
f

(x, y) = min
x

0
((x� x0)2 + min

y

0
((y � y0)2 + f(x0, y0))), (3)

= min
x

0
((x� x0)2 +D

f |
x

0 (y)), (4)

where D
f |

x

0 (y) is the one-dimensional distance transform of f restricted to the column in-

dexed by x0. Thus the two dimensional transform can be computed by first performing one

dimensional transforms along each column of the grid, and then performing one dimensional

transforms along each row of the result. This argument extends to arbitrary dimensions, re-

sulting in the composition of transforms along each dimension of the underlying grid. Note

that changing the order of these transforms yields the same result, as can be seen readily

9

new intersection right of last intersection: 
maintain last parabola in the envelope

new intersection left of last intersection:  
remove last parabola from the envelope



Pictorial structures

• This suggests a simple algorithm that is linear in the number of pixels:


• Maintain list with the lower envelope of the parabolas (indices and intersections)


• Move from left to right through all parabolas; and do for each parabola:


• Find intersection of parabola with the last parabola in lower envelope 


• If intersection is left of last intersection in lower envelope: remove last 
parabola from lower envelope, and go back one step


• Add parabola to lower envelope, starting from intersection

* Felzenszwalb & Huttenlocher, 2004
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“head” filter is more discriminative. The combined scores clearly show two good hypothesis for the object at this scale.



Graph structure

• One can define different graph structures, as long as they are trees:


!

!

!

!

!

• The tree structure is fixed, but edge lengths and directions are learned

Minimum spanning treeStar-shaped tree



Pictorial structures

• Examples of object detections by pictorial-structures models:

* Felzenszwalb et al., 2010



Results

• Precision / recall curves for car detector on Pascal VOC: 

16

training examples for cats only the face is visible, and we
learn a model where one of the components corresponds
to a cat face model, see Figure 9.

Tables 1 and 2 summarize the results of our system on
the 2006 and 2007 challenge datasets. Table 3 summarizes
the results on the more recent 2008 dataset, together
with the systems that entered the official competition in
2008. Empty boxes indicate that a method was not tested
in the corresponding object class. The entry labeled
“UofCTTIUCI” is a preliminary version of the system
described here. Our system obtains the best AP score
in 9 out of the 20 categories and the second best in 8.
Moreover, in some categories such as person we obtain
a score significantly above the second best score.

For all of the experiments shown here we used the
objects not marked as difficult from the trainval

datasets to train models (we include the objects marked
as truncated). Our system is fairly efficient. Using a
Desktop computer it takes about 4 hours to train a model
on the PASCAL 2007 trainval dataset and 3 hours to
evaluate it on the test dataset. There are 4952 images
in the test dataset, so the average running time per
image is around 2 seconds. All of the experiments were
done on a 2.8Ghz 8-core Intel Xeon Mac Pro computer
running Mac OS X 10.5. The system makes use of the
multiple-core architecture for computing filter responses
in parallel, although the rest of the computation runs in
a single thread.

We evaluated different aspects of our system on the
longer-established 2006 dataset. Figure 8 summarizes
results of different models on the person and car cate-
gories. We trained models with 1 and 2 components with
and without parts. We also show the result of a 2 compo-
nent model with parts and bounding box prediction. We
see that the use of parts (and bounding box prediction)
can significantly improve the detection accuracy. Mixture
models are important in the car category but not in the
person category of the 2006 dataset.

We also trained and tested a 1 component model on
the INRIA Person dataset [10]. We scored the model
with the PASCAL evaluation methodology (using the
PASCAL development kit) over the complete test set,
including images without people. We obtained an AP
score of .869 in this dataset using the base system with
bounding box prediction.

9 DISCUSSION

We described an object detection system based on mix-
tures of multiscale deformable part models. Our system
relies heavily on new methods for discriminative train-
ing of classifiers that make use of latent information.
It also relies heavily on efficient methods for matching
deformable models to images. The resulting system is
both efficient and accurate, leading to state-of-the-art
results on difficult datasets.

Our models are already capable of representing highly
variable object classes, but we would like to move
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Fig. 8. Precision/Recall curves for models trained on the
person and car categories of the PASCAL 2006 dataset.
We show results for 1 and 2 component models with
and without parts, and a 2 component model with parts
and bounding box prediction. In parenthesis we show the
average precision score for each model.

towards richer models. The framework described here
allows for exploration of additional latent structure. For
example, one can consider deeper part hierarchies (parts
with parts) or mixture models with many components.
In the future we would like to build grammar based
models that represent objects with variable hierarchical
structures. These models should allow for mixture mod-
els at the part level, and allow for reusability of parts,
both in different components of an object and among
different object models.
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Example detections18

person

car

horse

sofa

bottle

cat

Fig. 10. Examples of high-scoring detections on the PASCAL 2007 dataset, selected from the top 20 highest scoring
detections in each class. The framed images (last two in each row) illustrate false positives for each category. Many
false positives (such as for person and cat) are due to the bounding box scoring criteria.



Pictorial structures

• Use pictorial structures to prevent trackers from “switching” objects:

* Zhang & van der Maaten, 2013



Questions?


