Computer Vision by Learning
Assignments Day 2

March 26" 2014

Laurens van der Maaten

Computer Vision Laboratory, Delft University of Technology

]
TUDelft



1 Pedestrian Detection

€%= Exercise 1.1. Training and using a Dalal-Triggs detector

In this exercise, you will train and evaluate a Dalal-Triggs detector for pedestrian detection. The
folder images contains three folders: a folder with positive training examples, a folder with
negative training examples, and a folder with test images.

Inspect some of the training images. Why do the positive images contain two versions of the same
image? What type of invariance does this introduce in the detector? An why do you think the
collection of negative images is so much larger than that of positive images?

Load one of the training images and extracts histogram-of-oriented gradient (HOG) features using a
block size of 8 pixels:

>> block_size = 8;
>> im = im2double (imread (’ images/positive/crop_000010a.png’));
>> features = hog(im, block_size);

(You may need to domex -0 hog. cc first for this to work.) You can visualize the resulting HOG
features using the following command:

>> imshow (visualizeHOG (features));

Run the code snippet above on a number of positive images. Do you recognize the pedestrians in the
HOG features?

The function 1oad_hog_images loads in all the training images, extracts HOG features from
these images, and stores the resulting feature representations in a PRTools data set. It also returns
the original size of the HOG feature matrices (before they were concatenated in a single feature
vector). Build a HOG pedestrian-detection training set:

>> pos_folder = ’images/positive/’;

>> neg_folder = ’images/negative/’;

>> pos_files = dir([pos_folder "x.png’]);

>> neg_files = dir([neg_folder "x.png’]);

>> [A, hog_size] = load_hog_images (pos_folder, pos_files,

neg_folder, neg_files, block_size);

This may take a few minutes to complete depending on the speed of your processor and network
connection. If you encounter memory problems during this step, use a smaller, random subset of the
negative examples in neg_files as input.

Next, train an L2-regularized linear logistic regressor on the pedestrian data set. Use a value of 0.1
for the L2-regularization parameter A:

>> lambda = 0.1;
>> W = loglc2 (A, lambda);

Why is it important to use L2-regularization when training the pedestrian detector? What is the size
of weight matrix learned by the logistic regressor? Why this size?



Evaluate the classification error of your logistic regressor via 5-fold cross-validation:

>> err = crossval (A, loglc2([], lambda), 5)

Do you think this error is sufficiently low to get a good pedestrian detector?

The weights learned by the logistic regressor can be visualized as a HOG image as follows:
>> imshow (visualizeHOG (reshape (W.data.E(:,2), hog_size)));
What has the logistic regressor learned?

The function sliding window_detector applies the trained pedestrian classifier to a window
that is slid over the image at multiple scales, and performs non-maxima suppression to make the
final pedestrian detections. Why is it necessary to run the detector at multiple scales? Why do we
need to perform non-maxima suppression?

Apply the pedestrian detector to the test images. The sliding window implementation is rather naive:
it may take about a minute to perform the detection on a single image.

>> % Loop over test images
>> test_files = dir(’images/test/*.png’);
>> for j=l:length(test_files)

>> % Load image

>> im = im2double (imread ([’ images/test/’ test_files(Jj) .namel));

>> [boxes, response] = sliding_window_detector (im, W,
block_size, hog_size);

>> % Plot results

>> subplot (1, 2, 1); imagesc(response, [0 11);

>> colormap jet; axis equal tight off;

>> subplot (1, 2, 2); imshow(im); hold on

>> for i=l:size (boxes, 1)

>> rectangle ('Position’, [boxes (i, 2) boxes (i, 1)

>> boxes (i, 4) - boxes (i, 2)

>> boxes (i, 3) - boxes(i, 1)1, ..

>> "LineWidth’, 2, ’'EdgeColor’, [1 0 0]);

>> end

>> hold off; pause

>> end

The above code snippet shows the response surface in the left sub-image, and the detections in the
right sub-image. What are false positives in the detections? And false negatives?



2 Pedestrian Detection using Pictorial Structures

€%> Exercise 2.1. Using a Felzenszwalb detector

In this exercise, you will evaluate a Felzenszwalb detector for pedestrian detection. Because training
a latent SVM is computationally very expensive, we will focus on the evaluation of the detector in
this exercise.

Initialize the pictorial-structures detection software:
>> startup;

Load a pretrained pedestrian classifier:

>> load ('VOC2007/person_grammar_final’);
>> model.class = ’'person grammar’;
>> model.vis = @ () visualize_person_grammar_model (model, 6);

You can visualize the pedestrian detector as follows:
>> model.vis () ;

What information about pedestrians does the root filter capture? And the part filters? Why are the
HOG cells of the part filters smaller in the visualization?

The folder test_images contains the same test images as were used in the previous exercise.
Load an image and apply the pedestrian detector to the image:

>> % Loop over test images

>> test_files = dir(’test_images/*.png’);

>> for j=l:length(test_files)

>> % Load image

>> im = imread([’'test_images/’ test_files(]j) .name]l);
>> % Apply pedestrian detector

>> thresh = -0.6;

>> [ds, bs] = imgdetect (im, model, thresh);

>> if "isempty (ds)

>> top = nms(ds, 0.5);

>> bs = [ds(:,1:4) bs];

>> showboxes (im, reduceboxes (model, bs(top,:)));
>> else

>> showboxes (im, []);

>> end

>> pause

>> end

What do the blue boxes inside the red detection boxes mean? How are the locations of these blue
boxes relative to the red boxes determined? And the sizes / aspect ratios?

Perceptually, does the performance of the pictorial-structures detector seem better or worse than that
of the Dalal-Triggs detector? How could you measure which detector works better?



	Pedestrian Detection
	Pedestrian Detection using Pictorial Structures

