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Abstract

In this paper we summarize our TRECVID 2017 [1] video
recognition and retrieval experiments. We participated in
three tasks: video search, event detection and video descrip-
tion. For both video search and event detection we explore
semantic representations based on VideoStory [8] and an
ImageNet Shuffle [16], which thrive well in few-example
regimes. For the video description task we experiment with
a deep network that predicts a visual representation from a
natural language description with Word2VisualVec [5], and
use this space for the sentence matching. For generative de-
scription we enhance a neural image captioning model with
Early Embedding and Late Reranking [4]. The 2017 edition
of the TRECVID benchmark has been a fruitful participa-
tion for our joint-team, resulting in the best overall result
for video search and event detection as well as the runner-up
position for video description.

1 Video Search and Event Detection

The MediaMill approach to ad hoc video search and multi-
media event detection is optimized for recognition scenarios
when video examples are scarce or even completely absent.
The key in such a challenging setting is a semantic video rep-
resentation [15]. Our experiments focus on exploring such
semantic representations for video search.

1.1 Representation I: VideoStory

The first representation is based on VideoStory, as detailed
in [8, 9]. To summarize, it learns the video representation
from freely available web videos and their descriptions using
an embedding between video features and term vectors. In
the embedding the correlations between the words are uti-
lized to learn a more effective representation by optimizing
a joint objective balancing descriptiveness and predictabil-
ity. We start from a dataset of videos, represented by video
features X, and their textual descriptions, represented by
binary term vectors Y , indicating which words are present
in each video description. Then, our VideoStory represen-
tation is learned by minimizing:

LV(A,W ) = min
S
Ld(A,S) + Lp(S,W ), (1)

where A is the textual projection matrix, W is the visual
projection matrix, and S is the VideoStory embedding. The
loss function Ld corresponds to our first objective for learn-
ing a descriptive VideoStory, and the loss function Lp cor-
responds to our second objective for learning a predictable
VideoStory. The embedding S interconnects the two loss
functions.

Descriptiveness. For the Ld function, we use a variant of
regularized Latent Semantic Indexing. This objective min-
imizes the quadratic error between the original video de-
scriptions Y , and the reconstructed translations obtained
from A and S:

Ld(A,S) =
1

2

N∑
i=1

‖yi −Asi‖22 + λaΩ(A) + λsΨ(S), (2)

where Ψ(·) and Ω(·) denote regularization functions, and
λa ≥ 0 and λs ≥ 0 are regularizer coefficients. We use
the squared Frobenius norm for regularization, which is the
matrix variant of the `2 regularizer, i.e. Ω(A) = 1

2‖A‖
2
F =
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ij , the sum of the squared matrix ele-

ments. Similarly for the VideoStory matrix Ψ(S) = 1
2‖S‖

2
F.

Predictability. The Lp function measures the occurred
loss between the VideoStory S and the embedding of video
features using W . We define Lp as a regularized regression,
similar to ridge regression:

Lp(S,W ) =
1

2

N∑
i=1

‖si −W>xi‖22 + λwΘ(W ), (3)

where we use (again) the Frobenius norm for regularization
of the visual projection matrix W , Θ(W ) = 1

2‖W ‖
2
F, and

λw is the regularization coefficient.

The VideoStory objective function, as given in Eq. (1),
is convex with respect to matrix A and W when the em-
bedding S is fixed. In that case, the joint optimization is
decoupled into Eq. (2) and Eq. (3), which are both reduced
to a standard ridge regression for a fixed S. Moreover, when
both A and W are fixed, the objective in Eq. (1) is con-
vex w.r.t. S. Therefore we use standard stochastic gradient
descent by computing the gradients of a sample w.r.t. the
current value of the parameters, and we minimize S jointly
with A and W .



To predict our VideoStory representation from a low-level
video feature xi we use

si = W>xi, (4)

Then, using the predicted representation si, the term vec-
tors for each unseen video are predicted as:

ŷi = Asi = AW>xi, (5)

where the words with the highest values are most relevant
for this video.

To enable zero-example recognition, we employ the fol-
lowing steps: First, each test video is represented by pre-
dicting its term vector ŷi using Eq. (5), based on the pre-
trained embeddings. Second, we translate the textual event
definition into the event query, denoted as ye ∈ RM , by
matching the word2vec [17] mapping of the words in the
event definition with the M unique words in the VideoStory
dictionary. Finally, the zero-example ranking is obtained by
measuring the similarity between the video representations
and the event query based on the cosine similarity:

se(xi) =
ye>ŷi

||ye|| ||ŷi||
. (6)

1.2 Representation II: ImageNet Shuffle

The second representation builds on concepts obtained after
an ImageNet Shuffle [16]. The representation starts from a
deep network trained on 22K ImageNet concepts. To deal
with the problems of over-specific classes and classes with
few images, we introduce a bottom-up and top-down ap-
proach for reorganization of the ImageNet hierarchy based
on all its 21,814 classes and more than 14 million images.
The classes in the ImageNet dataset are a subset of the
WordNet collection and the classes are therefore connected
in a hierarchy. The connectivity between classes provides
information about their semantic relationship. We uti-
lize the hierarchical relationship of WordNet for combin-
ing classes to generate reorganized ImageNet hierarchies for
pre-training, as detailed in [16]. After this ImageNet Shuffle
we maintain about 13k concepts. For event detection, we
average the representations of the frames over each video,
followed by `1-normalization.

1.3 Submissions

We consider two base networks for both VideoStory and
ImageNet Shuffle: ResNet [10] and ResNeXt [20]. For
VideoStory, we consider four training regimes: i) the first
one relies on the VideoStory46K dataset [8], ii) the second
trains on the Fudan Columbia Video dataset (FCVID) [11],
iii) the third trains on EventNet [22], and iv) trains on a
merged collection of all three. We only add terms to the
dictonary that occur more than 10 times.

1.3.1 Ad Hoc Video Search

Our ad hoc video search experiments show it is important to
select the right terms. Instead of just taking the average of
the query terms in word2vec space, we consider a query plan
based on part-of-speech tagging of the query. We consider
the following tags: < noun1 > , < verb > , < noun2 >,
< subject >, < predicate >, < remainder >. Our query
plan is as follows: A) We use nouns, verbs, and adjectives in
< subject > unless it concerns a person (noun1 = “person”,
“man”, “woman”, “child”, . . . ). B) We use nouns in <
remainder > unless it concerns a person or noun is a setting
(“indoors”, “outdoors”, . . . ). C) We use < predicate >, and
D) We use all nouns in the sentence, unless noun is a person
or a setting.

We further find that the ResNeXt base network is bet-
ter than ResNet for VideoStory, while it is the other way
around for the ImageNet Shuffle embedding. Overall, the
VideoStory embedding (Run3) slightly outperforms the Im-
ageNet Shuffle (Run4). A Borda count combination of mul-
tiple Shuffle embeddings results in better retrieval than a
combination of VideoStory embeddings, and we obtain the
best results when fusing the VideoStory and ImageNet Shuf-
fle retrieval results (Run2 and Run1). Our first three runs
are the top-3 submissions for the automatic ad hoc video
search task in the TRECVID 2017 benchmark, see Figure 1.

1.3.2 Multimedia Event Detection

Our multimedia event detection experiments follow our win-
ning entry of the TRECVID 2016 benchmark [18]. We rely
on the VideoStory and ImageNet Shuffle embedding, as well
as dense trajectories and MFCC audio features. New this
year are the updated base networks, difference coding in-
stead of average pooling, and a zero-shot sliding window
based augmentation. The difference coding performs a K-
means clustering on the last fully connected layer before
the probability layers, then it performs a Fisher like encod-
ing but sigma is based on distance of points assigned to a
cluster center. The zero-shot sliding window augmentation
expands the ten training examples by finding segments in
each training video most similar to the event query. We use
a 30 second non-overlapping fixed window to segment the
videos and rely on the cosine similarity between query text
and VideoStory embedding. We select a maximum of five
additional segments per training video.

We submit the following runs:

• Run5 computes the last fully connected layer of a
ResNeXt Shuffle applied to two frames per second. A
video is represented by difference coding of the frame
level features. A HIK SVM model is trained on the
difference codings and used to classify videos.

• Run4 adds HIK SVM models trained on VideoStory
features based on a ResNeXt base network and addi-
tional examples as selected with the segment augmenta-
tion. The final output of the system is based on fusion
of all three modalities.



Figure 1: Overview of the 2017 TRECVID ad hoc video search task benchmark in which MediaMill was the best overall performer,
all runs ranked according to mean inferred average precision.

Figure 2: Overview of the 2017 TRECVID multimedia event detection task benchmark for pre-specified events in which MediaMill
was the best overall performer, all runs ranked according to mean induced average precision.

• Run3 is similar to Run4, but also includes ResNet mod-
els. The final output of the system is based on fusion
of all six modalities. For this system we also submitted
an ad hoc run.

• Run2 is similar to Run4, but also adds HIK SVM mod-
els trained on Fisher vector encoded dense trajectory
features and MFCC audio features. The final output
of the system is based on fusion of all five modalities.

• Run1 is a combination of Run2 and Run3. The final
output of the system is based on fusion of all eight
modalities. For this system we also submitted an ad
hoc run.

Run5 serves as a baseline and shows the value of difference
coding with a mean iAP of 40.2, better than all other non-
MediaMill runs submitted to TRECVID 2017. When com-
bined with VideoStory and additional examples we score a



Figure 3: Overview of the 2017 TRECVID multimedia event detection task benchmark for ad hoc events in which MediaMill was
the best overall performer, all runs ranked according to mean induced average precision.

mean iAP of 41.3. Adding an additional base network fur-
ther lifts the iAP to 43.8. The addition of motion and audio
has a modest effect overall (Run2: 41.5 / Run1: 43.8), but
may still be beneficial for individual events. For event E060
“Cheerleading” for example, Run1 scores 73.0 where Run5
achieves 55.8. For the ad hoc runs, we see similar behav-
ior, be it that with 68.2 the visual-only run (Run3) slightly
outperforms the multimodal run scoring 67.3 (Run1). For
both the pre-specified and ad hoc events, our runs are the
top submissions for the multimedia event detection task in
the TRECVID 2017 benchmark, see Figure 2 and Figure 3.

2 Video Description

We continued our participation in the Video to Text De-
scription (VTT) task, which consists of two subtasks, i.e.,
Matching and Ranking, and Description Generation. For
both subtasks our system came in the second place.

2.1 Matching and Ranking

In this subtask, participants were asked to rank a list of pre-
specified sentences in terms of their cross-modal relevance
with respect to a given video. There are 1,880 videos col-
lected from Twitter Vine for testing. Each video is about
6 sec long. The videos have been (randomly) split by the
task organizers into four subsets, i.e. Subset.2, Subset.3,
Subset.4 and Subset.5, which contain 1,613, 795, 388 and
159 videos, respectively. Subset.2 has two equal-sized sets
of sentences, each containing one ground-truth sentence for
each video in Subset.2. In a similar manner, the sentence
sets for Subset.3, Subset.4 and Subset.5 are constructed but
the number of the sets become 3, 4, and 5.

Approach. We improve our TV16 system by substitut-
ing the Word2VisualVec (W2VV) model [5] for its multi-
scale version [6]. W2VV is a deep neural network that
projects a given sentence into a visual feature space, en-
abling cross-modal matching between video and text to be
directly conducted in the visual feature space. The projec-
tion is performed in two steps. First, a varied-length sen-
tence s is encoded into a fixed-length vector by a sentence
vectorization layer. Then, the encoding result goes through
two fully connected layers to produce a visual feature vec-
tor r(s). Consequently, the cross-modal relevance between
a given video v and the sentence is computed as the cosine
similarity between r(s) and the video feature φ(v). While
the TV16 edition implements the sentence vectorization us-
ing only a pre-trained word2vec (w2v) [13], the new W2VV
performs multi-scale sentence vectorization. As illustrated
in Fig. 4, the sentence is vectorized in parallel by three vec-
torization strategies including Bag-of-Words (BoW), w2v
and a Gated Recurrent Units (GRU) [2].

To obtain the video-level feature, we uniformly sample
frames with an interval of 0.5 second. A pre-trained CNN
model is used to extract deep visual features per frame.
The video-level feature is obtained by mean pooling over
the frames. We employ two ResNeXt-101 models, sep-
arately trained on the full ImageNet dataset [3] and the
Places2 scene dataset [23], and thus denoted as ResNeXt-
101-imagenet and ResNeXt-101-places. The audio channel
of a video can sometimes provide complementary informa-
tion to the visual channel. To exploit this channel, we ex-
tract a 1,024-dim bag of quantized Mel-frequency Cepstral
Coefficients vector [7] and concatenate it with the visual
features. We train W2VV models that predict the visual-
audio features using the MSR-VTT dataset [21]. The TV16
test set is adopted for optimizing hyper-parameters.



Table 1: Performance of our submissions in the TV17 video matching and ranking subtask.

2*runs Subset.2 Subset.3 Subset.4 Subset.5

A B MEAN A B C MEAN A B C D MEAN A B C D E MEAN

run 1 0.223 0.226 0.225 0.303 0.306 0.304 0.304 0.401 0.387 0.398 0.395 0.395 0.517 0.548 0.586 0.514 0.531 0.539

run 2 0.225 0.227 0.226 0.309 0.308 0.306 0.308 0.406 0.392 0.417 0.400 0.404 0.532 0.561 0.585 0.513 0.547 0.548

run 3 0.218 0.225 0.222 0.303 0.306 0.307 0.305 0.407 0.384 0.416 0.398 0.401 0.523 0.557 0.576 0.528 0.532 0.543

run 4 0.229 0.229 0.229 0.316 0.312 0.310 0.313 0.407 0.388 0.421 0.404 0.405 0.528 0.555 0.585 0.513 0.548 0.546
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Figure 4: A conceptual diagram of the multi-scale
Word2VisualVec model [6] we use for the Matching and Rank-
ing subtask. The model transforms a given sentence into a video
feature vector. The sentence is first vectorized in parallel by three
vectorization strategies, i.e. Bag-of-Words (BoW), a pre-trained
word2vec (w2v), and a Gated Recurrent Units (GRU) network. It
then goes through two fully connected layers. The model is trained
using many relevant video-sentence pairs to minimize the Mean
Squared Error between the feature vectors extracted from the videos
and the vectors predicted from their sentence descriptions.

Submissions. We submitted four runs:

• run 1. baseline. We use W2VV that predicts the
ResNext-101-imagenet + MFCC feature.

• run 2. score fusion. We use two W2VV models, one for
predicting the ResNext-101-imagenet + MFCC feature
and the other for predicting the ResNext-101-places +
MFCC feature. Accordingly, a video-sentence pair has
two relevance scores, which are averaged.

• run 3. rank fusion. We convert the individual scores
from run 2 to ranks and aggregate the ranks.

• run 4. score fusion + rerank. We perform video tag-
ging, and re-order the sentence ranking from run 2 by
matching the sentences with the predicted tags. We col-
lect the top tags predicted by ResNext-101-imagenet,
ResNext-101-fcvid trained on the FCVID dataset [11],
and the neighbor voting algorithm [14] with the neigh-
bors retrieved from the MSR-VTT dataset.

Results. The performance of the four runs, measured
by Mean Inverted Rank, is summarized in Table 1. Among
them run 4 tops the performance.

2.2 Description Generation

In this subtask, participants were asked to generate a sen-
tence to describe a specific test video, independently and

without taking into consideration the existence of the sen-
tence sets in the Matching and Ranking subtask.
Approach. Similar to our TV16 system [18], we em-

ploy the Show and Tell model [19], which uses a ConvNet +
LSTM framework for sentence generation. We use the im-
plementation1 of [12] that introduces importance sampling
into the ConvNet + LSTM framework to regularize the in-
fluence of individual training captions in terms of their qual-
ity. We again use the MSR-VTT dataset [21] as our training
data. We improve the generated description by reranking
the sentences generated by the LSTM module in terms of au-
tomatically predicted video tags [4]. Moreover, to describe
the “where” facet of a test video, we enrich the generated
description by appending a scene phrase, e.g., on an air-
field, in an art gallery, in a science museum, predicted by
the ResNeXt-places model, if applicable.
Submissions. We submitted four runs, illustrated in

Fig. 5 and descried as follows.

• run 1. baseline. We use the ResNeXt-101-imagenet +
MFCC feature as input to the Show and Tell model,
and perform beam search with size of 5 for sentence
generation.

• run 2. rerank. We increase the beam size to 20 to
generate a list of 20 candidate sentences. The sentence
that maximizes its match with the predicted tags (c.f.
Section 2.1) is chosen as the final video caption.

• run 3. rerank + scene. We enrich the result from run 2
by appending a scene class predicted by ResNeXt-101-
places, if applicable. To make the expanded sentence
read naturally, we have compiled the 365 Place2 classes
with prepositions and articles to proper phrases in ad-
vance. For instance, the class indoor stage is replaced
by “on an indoor stage”.

• run 4. rerank + scene + semantic input. Based on
run 3, we enrich the initial input to the LSTM network
by concatenating the visual-audio feature and a 233-
dim concept vector predicted by the ResNeXt-101-fcvid
model.

Results. Table 2 summarizes the performance of the
four runs on the TV17 test set. Sentence reranking by pre-
dicted tags gives better results under all metrics. The other
tricks, i.e. scene and semantic input, do not really help for
improving these automatically computed metrics.

1https://github.com/weiyuk/fluent-cap

https://github.com/weiyuk/fluent-cap


CNN LSTM models are walking
down the runway

Maximize  tag  
matches

models are walking in a
fashion show

Tagging

run  1.  baseline
run  2.  rerank

models are walking in a
fashion show on an
indoor stage

run  3.  rerank +  scene

run  4.  rerank +  scene  +  semantic  input

Figure 5: An illustration of our four runs for the Video Descrip-
tion Generation subtask. Among them run 2 that reranks the
generated sentences in terms of their matches with video tagging
results performs the best on the TV17 test set.

Table 2: Performance of our submissions in the TV17 video
description generation subtask.

Submissions BLEU METEOR CIDEr STS SUM

run 1 0.013 0.152 0.291 0.418 0.875

run 2 0.028 0.181 0.355 0.424 0.988

run 3 0.020 0.196 0.328 0.401 0.945

run 4 0.024 0.194 0.328 0.402 0.947
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