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Conceptlets: Selective Semantics for
Classifying Video Events

Masoud Mazloom, Efstratios Gavves, and Cees G. M. Snoek, Senior Member, IEEE

Abstract—An emerging trend in video event classification is to
learn an event from a bank of concept detector scores. Different
from existing work, which simply relies on a bank containing all
available detectors, we propose in this paper an algorithm that
learns from examples what concepts in a bank are most informa-
tive per event, which we call the conceptlet. We model finding the
conceptlet out of a large set of concept detectors as an importance
sampling problem. Our proposed approximate algorithm finds the
optimal conceptlet using a cross-entropy optimization. We study
the behavior of video event classification based on conceptlets by
performing four experiments on challenging internet video from
the 2010 and 2012 TRECVIDmultimedia event detection tasks and
Columbia’s consumer video dataset. Starting from a concept bank
of more than thousand precomputed detectors, our experiments
establish there are (sets of) individual concept detectors that are
more discriminative and appear to bemore descriptive for a partic-
ular event than others, event classification using an automatically
obtained conceptlet is more robust than using all available con-
cepts, and conceptlets obtained with our cross-entropy algorithm
are better than conceptlets from state-of-the-art feature selection
algorithms.What ismore, the conceptletsmake sense for the events
of interest, without being programmed to do so.

Index Terms—Concept detection, cross-entropy optimization,
event recognition.

I. INTRODUCTION

A UTOMATED understanding of events in unconstrained
video has been a challenging problem in the multimedia

community for decades [1]. This comes without surprise as pro-
viding access to events has great potential for many innovative
applications [2]–[4]. Traditional classifiers represent an event
by a carefully constructed explicit model [5], [6]. In [6], for ex-
ample, Haering et al. propose a three-layer inference process
to model events in wildlife video. In each layer event-specific
knowledge is incorporated ranging from object-level motion, to
domain-specific knowledge of wildlife hunting behavior. While
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Fig. 1. Example videos for the events Assemblinga shelter Board trick, and
Birthday. Despite the challenging diversity in visual appearance, each event
maintains specific semantics in a consistent fashion. This paper studies whether
a selective and descriptive event representation based on concept detectors can
be learned from video examples.

effective for classifying hunting events, such a knowledge-in-
tensive approach is unlikely to generalize to other problem do-
mains. Hence, event representations based on explicit models
are well suited for constrained domains like wildlife and rail-
road monitoring, but they are unable, nor intended, to generalize
to a broad class of events in unconstrained video like the ones
in Fig. 1.
Recently, other event classification solutions have started to

emerge. Inspired by the success of bag-of-word representations
for object and scene recognition [7], [8], several papers in
the literature exploit this low-level representation for event
classification [9]–[16]. In [9] Jiang et al. show that robust event
classification accuracy is feasible by combining bag-of-words
derived from SIFT descriptors, with bag-of-words derived
from both MFCC audio features and space-time interest points.
Their idea of combining multi-modal bag-of-words is further
extended by Natarajan et al. [10] and Tamrakar et al. [11],
who adhere to a more is better approach to event classification
by exhaustively combining various visual descriptors, quan-
tization methods, and word pooling strategies. In [13], [14]
the robustness and efficiency of various low-level features
for event classification are compared. In challenging bench-
marks like TRECVID’s multimedia event detection task [17]
and Columbia University’s Consumer Video dataset [18] the
bag-of-words representation has proven it’s merit with respect
to robustness and generalization, but from the sheer number
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of highly correlated descriptors and vector quantized words, it
is not easy to derive how these detectors arrive at their event
classification. Moreover, events are often characterized by
similarity in semantics rather than appearance. In this paper we
attempt to find a video representation able to recognize, and
ultimately describe, events in arbitrary content. We argue that
to reach that long-term goal a more semantic representation
than bag-of-words is urged for.
Inspired by the success of semantic concept detectors such

as ‘Car’, ‘Animal’, and ‘Indoor’ for image retrieval [19], ob-
ject recognition [20], [21], action recognition [22], and video
retrieval [23], [24] several papers in the event classification lit-
erature exploit a bank of concept detector scores as the video
representation [25]–[32]. Ebadollahi et al., for the first time,
explored the use of semantic concepts for classifying events
[25]. For creating their bank-of-concepts, they employed the 39
detectors from the Large Scale Concept Ontology [33]. Each
frame in their broadcast news video collection is then repre-
sented as a vector describing the likelihood of the 39 concept de-
tectors. To arrive at an event classification score they employ a
Hidden Markov Model. Due to the availability of large lexicons
of concept annotations [33], [34], several others have recently
also explored the utility of bank-of-concept representations for
event classification [26], [27], [31], [32]. In [26] Merler et al.
argue to use all available concept detectors for representing an
event. Based on a video representation containing 280 concept
detector scores, and a support vector machine for learning, the
authors show that competitive event classification results can
be obtained on the challenging internet video clips from the
TRECVID 2010 Multimedia event detection collection. In [32]
Habibian et al. arrive at a similar conclusion as [26] using a con-
cept bank consisting of 1,346 concepts for event classification
on a partition of the TRECVID 2012 Multimedia event detec-
tion collection. We note that in all these works [25], [26], [32]
the resulting event detector operates on all concepts simultane-
ously, making it hard to pinpoint what concepts are most infor-
mative for each event under consideration.
Rather than using as many concepts as one can obtain, Liu et

al. [31] show that by characterizing events using only a small
set of carefully selected concepts, competitive results are fea-
sible as well. It means that we do not necessarily need a large
set of concept detectors to represent events. Rather than ex-
ploiting prior knowledge to manually specify a concept-subset
for each event, we aim to learn themost informative concepts for
an event from examples. We are inspired by the concept bank
approach to event representation [25]–[29], [31], [32], so we
start with a set of concept detectors as well. However, instead
of using all available concepts, we attempt to learn from exam-
ples for a given event what concepts are most informative to in-
clude in its concept bank, which we call the conceptlet. Before
detailing the contributions of our work, we first discuss related
work on concept selection that we consider most relevant to this
paper.

II. RELATED WORK

In our survey of related work, we consider concept selection
in the context of the multimedia retrieval literature and the fea-
ture selection literature.

A. Concept Selection by Multimedia Retrieval

Concept selection has been studied extensively in the video
retrieval literature [35]–[41]. These selections automatically
translate an input query into a weighted list of concepts which
are then used for the retrieval. In [35] Natsev et al. consider
text-based, visual-based and result-based selections. Using
these three algorithms they find three rankings of concepts
and use them for selection. In [36] Snoek et al. use text and
visual analysis to select the single best concept for a query.
Concepts are ranked according to their similarity to the query
using the vector space model [42]. In [41] Wei et al. propose a
semantic space to measure concept similarity and facilitate the
selection of concept detectors based on the cosine similarity
between the concepts and the query in the semantic space.
Compared to [36], their approach combines detector scores
from multiple selected concepts. Li et al. in [40] are inspired
by tf-idf, which weights the importance of a detector according
to its appearance frequency. In [19] Rasiwasia et al. rank
concepts based on the scores the detectors obtained on the
visual query images. In [38] Rudinac et al. make a ranking
of concepts based on the frequency, variance, and kurtosis of
concepts in the video queries. Using these three criteria, they
select concepts. We observe that, in general, concept selection
in multimedia retrieval, ranks a bank of concepts using text and
video analysis and selects the single best or multiple concepts
from the top of the obtained ranking.
All these existing selections evaluate the concept detectors in-

dividually and optimize a ranking of concepts per query. How-
ever, none of them considers the co-occurrence between the se-
lected concepts. One can reasonably expect that for the events
feeding an animal and grooming an animal, the concept ‘cat’
is important, but to differentiate the two events ‘cat’ has to
co-occur with either ‘food’ or ‘bathtub’. Rather than evaluating
concepts individually, we aim in this paper to evaluate subsets
of selected concepts simultaneously. We strive to select a near
optimal concept-subset for each event category. We propose an
algorithm that learns from examples what concepts in a bank
are most informative per event.

B. Concept Selection by Feature Selection

A second perspective on concept selection considers it as fea-
ture selection, as common in the machine learning literature.
Feature selection reduces data dimensionality by removing the
irrelevant and redundant features using either unsupervised or
supervised approaches. An example of unsupervised feature se-
lection in the context of event classification by concept detectors
is the work byGkalelis et al. [27] who proposeMixture Subclass
Discriminant Analysis to reduce a bank-of-concepts consisting
of 231 detector scores to a subspace best describing an event.
Since the algorithm alters the original concept representation it
can no longer describe the semantics of the events of interest.
Different from their work, we focus here on the problem of su-
pervised feature selection, where the class labels, in our case
event labels, are known beforehand.
Supervised feature selections are commonly classified into

three categories, depending on their integration into the clas-
sifier [43], [44]: filters, embedders and wrappers.
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Filters [45], [46], evaluate each feature separately with a
measure such as mutual information or the correlation coef-
ficient between features and class label. Hence, filters ignore
dependencies between a set of features, which may lead to
decreased classification performance when compared to other
feature selections. Moreover, filters are usually computationally
efficient and they produce a feature set which is not optimized
for a specific type of classifier. Finally, filters provide a fea-
ture ranking rather than an explicit best feature subset, which
demands a cut off point that needs to be set during cross vali-
dation. A strong filter is the Minimum Redundancy Maximum
Relevancy proposed by Peng et al. [46], which uses mutual
information and correlation between features for selection.
When applied for selecting concepts for representing events,
this method selects concepts that are mutually far away from
each other while they still have high correlation to the event
of interest. The feature selection computes a score for each
concept based on the ratio of the relevancy of the concept to the
redundancy of the concepts in the concept bank. Then it pro-
vides a concept ranking and removes the low scoring concepts.
However, there may exist some concepts which are ranked low
when considered individually but are still useful when con-
sidered in relationship with other concepts. In fact, Habibian
et al. [32] presented an analysis that showed effective video
event classification can be achieved, even when individual
concept detector accuracies are modest, if sufficiently many
concepts are combined. Hence, instead of selecting concepts
by relying purely on detector scores, as Minimum Redundancy
Maximum Relevancy does, we prefer to be less sensitive to
the performance of the concept detectors. If the presence of
a concept, either an accurate or inaccurate one, improves the
accuracy of an event classifier, we strive to maintain it.
Embedders [47], [48], consider feature selection within the

classifier construction. Compared to filters, the embedders can
better account for correlations between features. State-of-the-art
embedders are L1 norm SVM methods such as L1-Regularized
Logistic Regression proposed by Ng [48]. During constructing
of a linear classifier this embedder penalizes the regression co-
efficients and pushes many of them to zero. The features which
have non-zero regression coefficients are selected as the infor-
mative features. The algorithm is most effective when there are
many more redundant features than training examples. Further-
more, by definition of sparsity, one should expect and target
for minimizing the number of non-zero elements in the solution
vector. This condition is equivalent to employing the L0 norm
for regularization. The L0 norm is accompanied by non smooth
derivatives, which cannot be minimized in a gradient descent
based setting. As an approximation, in [48] the L0 norm is re-
placed with the L1 norm. However, the L1 norm does not nec-
essarily return the most optimal sparse solution. In this paper
we attempt to solve the L0 problem directly and obtain a truly
sparse, optimal solution. Not by using filters or embedders, but
by a wrapper.
Wrappers [49], [50], search through the feature space and

evaluate each feature subset by a classifier. To search the space
of all feature subsets, a search algorithm is wrapped around
the classification model. However, as the space of feature sub-
sets grows exponentially with the number of features, heuristic

methods are often used to conduct the search for an optimal
subset. The advantages of wrappers are the interaction between
feature subset search and model selection, and the ability to
take into account feature dependencies. Wrappers usually pro-
vide the proper feature set for that particular type of model.
A common drawback of wrappers is that they have a higher
risk of overfitting than other selections and are computationally
more intensive. We demonstrate that the increased computation
pays off for more accurate event classification. In our previous
work [51], we propose a wrapper to find an informative con-
cept-subset per event. For each keyframe in a video the most
representative concepts are selected and eventually aggregated
to video level. While effective, the algorithm cannot determine
the optimal bank size and its iterative procedure on frame-level
is computationally demanding. In this paper we address these
two drawbacks. Inspired by thewrappers and our previous work
[51], we attempt to find what concepts in a bank are most infor-
mative per event.

C. Contribution

Wemake three contributions in this paper. First, we model se-
lecting the conceptlet out of a large set of concept detectors as
an importance sampling simulation. Second, we propose an ap-
proximate solution that finds the near optimal conceptlet using
a cross-entropy optimization. Third, we show qualitatively that
the found conceptlets make sense for the events of interest,
without being programmed to do so. To the best of our knowl-
edge no method currently exists in the literature able to deter-
mine the most informative concepts for video event classifica-
tion, other than our initial version of this work [51]. Note es-
pecially the algorithmic difference with concept selection by
multimedia retrieval [19], [35]–[38], [41]. In the multimedia
retrieval scenario the selected detector score is exploited di-
rectly for search. In our approach, the conceptlet is optimized
for learning to classify an event. We study the behavior of con-
ceptlets by performing several experiments on more than 1,000
hours of arbitrary internet video from the TRECVID Multi-
media Event Detection tasks 2010 [17], 2012 [17], and Co-
lumbia’s Consumer Video dataset [18]. But before we report
our experimental validation, we first introduce our algorithm
which learns from video examples the conceptlet for video event
classification.

III. CONCEPTLETS

Our goal is to arrive at an event representation containing in-
formative concept detectors only, which we call a conceptlet.
However, we first need to define what is informative. For ex-
ample, one can reasonably expect that for the event feeding an
animal, concepts such as ‘food’, ‘animal’ or ‘person’ should be
more important to create a discriminative event model, and thus
informative. We start from a large bank of concept detectors for
representing events. Given a set of video exemplars of an event
category, the aim is to find a (smaller) conceptlet that accurately
describes this event. In this Section we describe our algorithm
for selecting the conceptlet for each event category.
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A. Preliminary

We first introduce some basic notation. Suppose we have a
concept bank consisting of concepts, and

represents a concept-subset with length , where .
Given a set of exemplar videos, a conceptlet for an event is
sampled from the space of all possible concept-subsets with
size , that is , to best describe the video exemplars of
the event. For a subset , a concept is selected according to the
probability density function . Here, denotes the binary
variable that corresponds to whether concept was selected or
not, which is .We denote the parameter that controls
the probability of , with , that is .
The number of different concept-subsets with length out of

concepts, i.e., , is equal to , which grows combina-

torially with increasing and decreasing . Thus, the proba-
bility of finding an informative conceptlet becomes very small.
This inspires us to model the problem of finding the rare con-
ceptlet, i.e., , in the space , as an importance sampling
problem [52]. We use the cross-entropy [53], proven to yield
robust results in a variety of estimation and optimization prob-
lems [51], [54], [55] without depending too much on parame-
ters and their initialization. As the cross-entropy requires only
a small number of parameters, chances of overfitting are min-
imized during the process of finding the informative concepts
during training. Moreover, convergence is relatively fast and a
near-optimum solution is guaranteed [53].
Suppose that the sample of a random subset is drawn from

space using the probability density function . Since, every
concept will either be sampled, or not, we assume function to
follow a one-trial binomial distribution:

(1)

Moreover, assume that there is a neighborhood con-
taining the concept-subsets with size , accurately describing
the video exemplars. Let be the probability of sampling a
concept-subset from the neighborhood. Each of the of
concept-subsets has a limited capacity of accurately repre-
senting the video exemplars. Let be the score function
which measures the capacity that the concept-subsets accu-
rately represents the video exemplars. Suppose is the lowest
score of all concept-subsets in the neighborhood , according to
the score function , i.e., . Then, the
concept-subset with probability will be the informative con-
ceptlet for which

(2)

We approximate this probability with the expectation:

(3)

where , is an indicator function, referring to the
set of concept-subset for which the condition
holds. The straightforward way for estimating is to use con-
ventional sampling methods, such as crude Monte Carlo. Since
the space of all possible concept-subsets is huge, estimating the
probability of a concept-subset in using the density func-
tion is impractical.

B. Cross-Entropy Formulation

An alternative way is based on importance sampling sim-
ulation. To illustrate, suppose a different probability density
function exists, which draws samples from neighborhood
with high probability. Using has the advantage of drawing
more concept-subsets from . Indeed, is used as an impor-
tance sampling density function to estimate the expectation of
, denoted , using a likelihood ratio estimator. More precisely,
for concept-subsets samples, is equal to:

(4)

where denotes the concept-subset with size . The ex-
pectation is then optimally estimated when the right side of
Eq. (4) is equal to , which means the value of expression inside
sigma has to be equal to , . For this
reason the value of density function has to be equal to:

(5)

Since Eq. (5) depends on the unknown quantity , an analyt-
ical solution is impossible. Instead, the solution is to be found
in an iterative approximation. Let us assume that there exists an
optimal conceptlet , controlled by the parameter vector .
Using , the maximum score with respect to a specific

video event classification accuracy is given by . We denote
this theoretical conceptlet state as and all other
estimated concept-subsets as . The goal is to find

which best approximates , i.e., the
theoretical optimal conceptlet. In order to reach the goal state,

, we generate multiple at each iteration.
At each iteration, the concept-subsets that perform best are
used to update the search parameters . The iterations gradually
converge to neighborhood with high probability. To guarantee
convergence towards the goal state, the distance between and
should be decreased after each iteration. This is achieved

by adapting the importance sampling density function via
updating the parameters of the iteration’s best performing
subsets. A particularly convenient measure of distance between
two densities and is the Kullback-Leiblerdistance, which is
also termed the cross-entropy between and .
The cross-entropy is defined as:

(6)

Given that the sampling distributions and of concept-sub-
sets follow a one-trial binomial distribution, the cross-entropy
between the density function and density function is reduced
for:

(7)

where denotes the probability of concept in iteration and
denotes the existence of concept in the th con-

cept-subset . The parameter directly shows the impact of
concept in video event classification at iteration . Larger
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makes the presence of concept in the optimal solution more
likely. The parameter , defines the percentage of
best performing concepts scoring higher than taken into
account during each iteration.

C. Algorithm

The sample and search strategy for concept-subsets at itera-
tion has three steps:
(1) Sampling of concept-subsets . Based on the current

parameter values , sample concept-subsets
using that is:

(8)

(2) Adaptive updating of score . At iteration , evaluate
each of sample using score function and find

the samples that scored best on the . After
having sampled concept-subsets and sorted them in
descending order by performance: ,
the smallest score value is used as the next iterations’
reference score , namely . All samples

taken into account should perform at least as good
as .

(3) Adaptive updating of parameter vector . Given the
good performing samples found in step 2, the

updated parameter set is estimated as a function of
the parameter vectors of these samples using Eq. (7). In-
formative concept-subsets are best captured by the con-
cepts represented by high value of .

In the first step, we sample the concept-subsets based
on the parameters from iteration . The second step aims
at keeping at each iteration the top performing concept-subsets
, sampled in the first step. Finally, the parameter vector

is updated according to Eq. (7) in the third step, in a way that
the distance is reduced. Updating parameters using
Eq. (7) is equivalent to finding the frequency of a concept in the
top performing concept-subsets at iteration . It means
that the probability of those concepts that together improve the
event classification accuracy are increased after each iteration.
Repeating these three steps for each iteration leads the search
towards the conceptlet in neighborhood . The se-
lection process is illustrated in Fig. 2.
In the above analysis, plays an important role. Since con-

trols the binomial distribution , the initial values of the param-
eter vector regulates the size of the conceptlet. Typically,
these initial values are set to the same value for all concepts.
Lower initial values lead to smaller concept-subsets. Moreover,
due to the randomness of sampling, the exact size of the final
conceptlet is not known a priori. As a result, other than uni-
formly setting to a constant for all concepts, different values
can be assigned to favor a certain subset of the concepts. In gen-
eral, different sources of prior knowledge will lead to different
concept-subsets. Thus the initialization of will influence both
the size and the informativeness of the resulting conceptlet.
For the purpose of event classification, the score function

typically needs labeled training data to quantify the accuracy
of various concept-subsets . To do so, we split the training
data into a training and validation set. An event classifier is then

Fig. 2. Concept selection for an event using the values of the parameter vector
at several iterations. At the beginning has a uniform low value, indicating

that all concepts have the same low probability to be selected. After a few iter-
ations, some concepts emerge as more probable for selection than others. After
20 iterations spikes are clearly visible, implying that the corresponding concepts
are considered in the conceptlet.

learned from the conceptlet in the training set and validated on
the validation set. We use average precision to reflect the accu-
racy on the validation set. To find the optimum conceptlet per
event, we also change the initialization value of by consid-
ering different values of , the size of the concept-subsets. Our
supervised selection algorithm for obtaining the conceptlets is
summarized in Table I.

IV. EXPERIMENTAL SETUP

A. Data Sets

We investigate the effectiveness of conceptlets for video
event classification by performing four experiments on three
large datasets of challenging real-world web video for event
classification: the TRECVID 2010 Multimedia Event Detection
dataset [17], the partition of the TRECVID 2012 Multimedia
Event Detection dataset [17] used in [32], and the Columbia
Consumer Video dataset [18].
TRECVID MED 2010 [17] contains 3,465 internet video

clips with over 115 hours of user generated videos content. The
dataset contains ground truth for three event categories: Assem-
bling a shelter, Batting a run and Making a cake. We train and
evaluate our event classifiers on the train and test set that consist
of 1,723 and 1,742 video examples respectively.
MediaMill MED 2012 [32] is a partition of the TRECVID

2012 Multimedia Event Detection dataset [17] defined by
Habibian et al. [32]. It consist of 1,500 hours of unconstrained
videos provided in MPEG-4 format taken from the web with
challenges such as high camera motions, different view points,
large intra class variation and poor quality with varying resolu-
tion. The dataset comes with ground-truth annotations at video
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TABLE I
THE PROPOSED ALGORITHM WHICH MODELS FINDING A CONCEPTLET FOR VIDEO EVENT CLASSIFICATION AS A CROSS-ENTROPY OPTIMIZATION

level for 25 real-world complex events, such as Attempting
a board trick, Flash mob gathering, Town hall meeting, etc.
Following the setup of [32], we extract two partitions con-
sisting of 8,840 and 4,434 videos from the annotated part of the
development set. In this paper we use the first partition as the
train set, on which we train our event classifiers, and we report
all results on the second partition.
Columbia CV [18] consists of 9,317 user-generated YouTube

videos with over 210 hours of content. The dataset is annotated
with 20 semantic categories, where 15 of them are events, such
as Basketball, Ice skating, Birthday etc. As we focus exclusively
on events, the five object and scene categories in this dataset are
excluded from our experiment. We use the split suggested by
the authors which consist of 4,625 train videos and 4,637 test
videos.
Table II summarizes the statistics of the training and test sets

per event for the three video datasets. For a visual impression
of characteristic event examples we refer to Fig. 1 showing
two examples for the events Assembling a shelter, Board trick,
and Birthday in the TRECVID 2010 MED, the MediaMill 2012
MED, and the Columbia CV dataset.

B. Implementation Details

Concept Bank In the TRECVID 2010 MED dataset we
represent each video by a histogram of the output of 280
concept detectors, defined and provided by Merler et al.
[26]. From the videos one frame is extracted every two
seconds and represented as a histogram of 280 concept de-
tectors scores. Then, the histograms are aggregated using
average-pooling to arrive at a representation per video. For
representing the videos in the MediaMill 2012 MED and
Columbia CV datasets we use a concept bank that consists
of 1,346 concept detectors. The 1,346 concept detectors are
trained using the training data for 346 concepts from the
TRECVID 2012 Semantic Indexing task [56] and for 1,000

objects from the ImageNet Large Scale Visual Recognition
Challenge 2011 [57]. Although some of the detector names
overlap, we prefer to keep all 1,346 as their training data is
different. The detectors are trained using a linear SVM atop
a standard bag-of-words of densely sampled color SIFT [8]
with Fisher vector coding [58] and spatial pyramids [59]. The
1,000 concepts from ImageNet are trained one versus all. The
negative examples for each concept from the TRECVID 2012
Semantic Indexing task are the positive examples from other
concepts and several examples without label. We compute
concept detector scores per video frame, which are extracted
once every two seconds. By concatenating and normalizing
the detector outputs, each frame is represented by a concept
score histogram of 1,346 elements. Finally the concept score
histograms are aggregated into a video-level representation
by average-pooling, which is known to be a stable choice for
video classification [26].
Event classification As we focus on obtaining an informa-

tive representation for video event classification, we are for the
moment less interested in the accuracy optimizations that may
be obtained from various kernel settings [60]–[62]. Hence, we
train for each event a one-versus-all linear support vector ma-
chine [63] and an approximated histogram intersection kernel
map [64]. We find the optimal parameter settings using 5-fold
cross-validation.
Cross entropy parameters After initial testing on small par-

titions of the data, we set the parameters of our algorithm to
find the conceptlets for each event as follows: number of iter-
ations , number of concept samples in each iteration

, and a percentage of best performing concept sam-
ples , leaving 100 best performing concept samples per
iteration for updating the sampling parameters. For finding the
best conceptlet size per event, we consider various sizes of ,
i.e., the size of concept-subsets, during 5-fold cross-validation
within the training data only.
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TABLE II
NUMBER OF POSITIVE VIDEOS IN THE TRECVID 2010 MED, MEDIAMILL 2012 MED, AND COLUMBIA CV DATASETS USED IN OUR EXPERIMENTS,

SPLIT PER EVENT. THE NUMBER OF NEGATIVE VIDEOS FOR EACH EVENT ARE AROUND 1,600, 8,800, AND 4,500, RESPECTIVELY

Evaluation criteria For both the objective function in
our conceptlet algorithm, as well as the final event classifica-
tion evaluation, we consider as criterion the average precision
(AP), which is a well known and popular measure in the video
retrieval literature [56]. We also report the average performance
over all events as the mean average precision (MAP).

C. Experiments

In order to establish the effectiveness of conceptlets for video
event classification, we perform four experiments.
Experiment 1: Influence of individual concepts To evaluate

the maximum effect of individual concept detectors on event
classification accuracy, we perform an oracle experiment by
simply evaluating each individual concept detector as if it was
an event classifier. We evaluate all individual concepts on all
events. Then we sort the list of concepts by their classification
accuracy for each of the events in the three datasets.
Experiment 2: Influence of concept bank size To assess the

effect of a growing number of concepts in a bank on video
event classification performance, we randomly sample a con-
cept-subset from our concept bank. For TRECVID 2010 MED
we randomly select concepts from the concept bank with 280
concepts defined by Merler et al. [26] with a step size of 10.
For both MediaMill 2012 MED and Columbia CV dataset we
randomly select concepts from our 1,346 concept bank with a
step size of 100. Each video in our dataset is then represented
in terms of the detector scores from the concepts in this random

subset. To cancel out the accidental effects of randomness, we
repeat this procedure 20 times for each subset size.
Experiment 3: Conceptletsversus all concepts In this exper-

iment we compare our proposed conceptlets to a bank based
on all available concept detectors [26], [32]. As the baseline,
we represent each video in TRECVID 2010 MED as a 280D
vector of detector scores [26] and each video in MediaMill 2012
MED and Columbia CV datasets as a 1,346D vector of detector
scores [32] (see Section IV-B). For finding the conceptlet per
event, we apply the cross-entropy optimization as described in
Section III-C on the training set only. To find the best conceptlet
size, we vary parameter . For events in the TRECVID 2010
MED we consider in the range [10, 20, …, 100]. In the Medi-
aMill 2012MED andColumbia CV datasets, we consider values
of in the range [10, 20, …, 100, 200, 300,400,500]. We train
an event detector on the found conceptlet and report its perfor-
mance on the (unseen) test set.
Experiment 4: Conceptletsversus other selections In this

experiment we compare conceptlets obtained with our cross-en-
tropy algorithm to conceptlets obtained from state-of-the-art
feature selection algorithms: Minimum Redundancy Maximum
Relevancy [46] and L1-Regularized Logistic Regression [48].
To select the concepts per event by Minimum Redundancy
Maximum Relevancy, at first we rank all concepts. Then we
conduct a 5-fold cross validation on the training set with a
varying number of selected concepts ranging from 10 to 1,000
with a step size of 10. In L1-Regularized Logistic Regression,
since the regularization parameter controls the sparsity of
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TABLE III
EXPERIMENT 1. INFLUENCE OF INDIVIDUAL CONCEPTS ON VIDEO EVENT CLASSIFICATION ACCURACY. WE LIST THE FIVE BEST CONCEPTS FOR
THREE EVENTS PER DATASET, TOGETHER WITH THE NUMBER OF POSITIVE TRAINING EXAMPLES USED TO TRAIN THE CONCEPT DETECTORS.

NOTE THE SEMANTIC CORRESPONDENCE BETWEEN GOOD PERFORMING CONCEPTS AND EVENTS. CONCEPTS IN ITALICS ARE ALSO
AUTOMATICALLY SELECTED BY THE CONCEPTLET ALGORITHM IN EXPERIMENT 3

concepts, we conduct a 5-fold cross validations on the training
set by varying this parameter from 1 to 100 with step 5 to select
the concepts per event. For both feature selections we train an
event classifier with a linear SVM on the selected concepts and
report its performance on the (unseen) test set.

V. RESULTS

A. Influence of Individual Concepts

We show the results of experiment 1 in Table III. We observe
that the best detectors per event also make sense, most of the
time. When we consider the event Wedding ceremony, for ex-
ample, the best possible concepts are ‘Church’, ‘Altar’, ‘Gown’,
‘Groom’ and ‘Suit’. For the event Makinga cake, concepts like
‘Cake’, ‘Food’, ‘Table desk’, ‘Building’ and ‘Room’ are the or-
acle choice. However, for the event Battinga run we find an ir-
relevant concept in the top of the concept ranking: ‘Hockey’.We
explain this by the fact that ‘Hockey’ shares many low-level vi-
sual characteristics with Baseball e.g., both sports are played on
a green field. It is also interesting to note that some of the rele-
vant concept detectors obtain the good event classification accu-
racy by having only a few positive training examples, consider
for example ‘Forest’ for the event Assembling a shelter, which
has only 12 positive examples. This result shows that there are
individual concepts that are more discriminative and descriptive
than others for representing events in internet video.

B. Influence of Concept Bank Size

We plot the results of experiment 2 on the three datasets in
Fig. 3. As expected the event classification accuracy increases
when more and more concept detectors are part of the bank.
For the TRECVID 2010 MED dataset (Fig. 3(a)), the in-

crease in event classification accuracy is close to linear up to
approximately 40 (random) concept detectors, afterwards it sat-
urates to the end value of 0.361 MAP when using all 280 avail-
able concept detectors. Interestingly, the plot reveals that there
exist an outlier concept-subset, containing only 70 concepts,
which performs better than using all 280 concepts (compare the
MAP of 0.389 with the maximum MAP of 0.361 when using
all concepts). This result shows that some concept-subsets are
more informative than others for video event classification. The
results on the other two datasets confirm this conclusion. For
the MediaMill 2012 MED dataset (Fig. 3(c)), there is an out-
lier concept-subset, containing only 800 concepts, which per-
forms better than using all 1,346 concepts (compare the MAP
of 0.312 with the maximum MAP of 0.292 when using all con-
cepts). Also for the Columbia CV dataset (Fig. 3(e)), we find that
there is an outlier concept-subset, containing only 600 concepts,
which performs better than using all 1,346 concepts (compare
theMAP of 0.531 with the maximumMAP of 0.507 when using
all concepts). These results indicate much is to be expected from
a priori search for the conceptlet of an event.
When we zoom in on individual events the connection be-

tween concept-subsets and event definitions can be studied. We
inspect the box plot also for all the individual events of the
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Fig. 3. Experiment 2. Influence of concept bank size in (a) TRECVID 2010 MED, (c) MediaMill 2012 MED, and (e) Columbia CV: Event classification accuracy
increases with the number of concepts in the bank, but the variance suggests that some concept-subsets are more informative than others. (d), (b) and (f) Influence
of concept bank size for the particular events: Landing a fish, Batting a run, and Wedding ceremony. For these events a small subset outperforms the bank using
all available concepts. Indicating that much is to be expected from a priori search for the most informative conceptlet for an event.

three datasets (data not shown). The plots reveal several posi-
tive outliers using just a small number of concepts in the subset.
Figs. 3(b), (d), (f) detail the box plot for the specific events Bat-
tinga run, Landing a fish, andWedding ceremony. For eventBat-
tinga run (Fig. 3(b)) we perceive an outlier subset with an AP
of 0.590 containing only 50 randomly selected concepts (com-
pare to the maximum of 0.553 when using all 280 concepts).
For event Landinga fish (Fig. 3(d)) the box plot reveals that

there exist a subset, containing only 400 concepts, which per-
forms better than using all 1,346 concepts (compare the top
of the whisker at 400 concepts, with an MAP of 0.489 with
the maximum MAP of 0.433 when using all concepts). Also
for the event Wedding ceremony (Fig. 3(f)) we observe an out-
lier subset with an AP of 0.500 containing only 500 randomly
selected concepts (compare to the maximum of 0.473 when
using all 1,346 concepts). The results of experiment 2 on three
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Fig. 4. Experiment 3. Conceptlets versus all concepts. A conceptlet outper-
forms a bank containing all available concept detectors for the large majority of
event categories when using either a linear or a non-linear SVM for video event
classification. (a) TRECVID 2010 MED. (b) MediaMill 2012 MED. (c) Co-
lumbia CV.

datasets with two different concept banks show that, in gen-
eral, the event classification accuracy increases with the number
of semantic concepts in the bank. However, it also shows that
some concept-subsets are more informative than others for spe-
cific events, and this may result in improved event classification
accuracy.

C. Conceptlets Versus All Concepts

We plot the result of experiment 3 in Fig. 4. For the large ma-
jority of event categories, conceptlets with selective semantics
are better than using all available concepts.
On the TRECVID 2010 MED dataset (Fig. 4(a)), we achieve

a 0.483 MAP in event classification by conceptlets, where the
result is 0.361/0.421 MAP when using all 280 concepts [26].

Conceptlets obtain a relative improvement of 34.0% over the
linear SVM and 14.7% over the non-linear SVM with only 83
concepts per event on average. We observe a considerable im-
provement for all three events using only a fraction of the avail-
able concept detectors (90, 70, and 90). Fig. 5(a), (b) shows the
conceptlets for the events Batting a run andMaking a cake. Our
algorithm selects concepts such as ‘Baseball’, ‘Cricket’, ‘Field’,
‘Running’, and ‘Sport’ that make sense for the event Batting
a run, without being programmed to do so. However, the con-
ceptlet also contains some irrelevant semantic concepts, such as
‘Hockey’ and ‘Soccer’, which share several visual characteris-
tics to the event (see Fig. 6). Similar conclusions hold for the
event Makinga cake.
On the MediaMill 2012 MED dataset (Fig. 4(b)), our con-

ceptlets reach to a 0.329 MAP in event classification, where
using all 1,346 concepts results in 0.292/0.317 [32]. A relative
improvement of 13.0% for the linear SVM and 3.7% for the
non-linear SVM using about 245 concepts on average per event.
Conceptlets obtain a considerable improvement for events such
as Landing fish, Dog show and Flash mob gathering using
only 300, 200, and 40 of the concept detectors available. When
relevant concepts are unavailable in the concept bank we started
with, the results will not improve much, as can be seen for the
events Attempting bike trick, Marriage proposal, and Making
sandwich, but often better than using all. Fig. 5(c), (d) shows
the conceptlet for Landing a fish and Flash mob gathering. The
conceptlet for the event Landing a fish consist of general con-
cepts such as ‘Adult male human’, ‘Hand’, ‘3-or-more-people’,
‘Sea-Mammal’ and event-specific concepts such as ‘Hook’
and ‘Reel’. The conceptlet for Flash mob gathering shows
several concepts that seem semantically relevant as well, such
as ‘Walking-running’, ‘Crowd’, ‘Daytime-outdoor’. However,
we also observe some concepts whose semantic connection
is less apparent, such as ‘Water-bottle’ and ‘Ground-combat’.
Note that the concepts are selected automatically from provided
event examples only.
On the Columbia CV dataset (Fig. 4(c)), we observe that con-

ceptlets obtain 0.625 MAP, where using all 1,346 concepts re-
sults in 0.507/0.565 MAP. Conceptlets are always better and
obtain a relative improvement of 23.2%/10.6% with only 93
concepts per event on average. Conceptlets obtain a consider-
able relative improvement for events such as Soccer, Biking and
Graduation using only 50, 50, and 200 of the available concept
detectors. Interestingly, for the event Birthday the improvement
compared to the linear SVM is as much as 87.2% (0.524 MAP
against 0.280 MAP) using only 30 concepts. Fig. 5(e), (f) high-
lights the conceptlets for Biking and Birthday. We observe that
most of the selected concepts for event Biking in Fig. 5(e), such
as ‘Bicycling’, ‘Bicycle’, ‘Daytime outdoor’, ‘Road’, ‘Legs’,
are semantically relevant to this event. In Fig. 5(f), we show
the conceptlet for Birthday. Beside semantically relevant con-
cepts such as ‘Candle’ we observe several semantically irrele-
vant concepts such as ‘Abacus’. When we inspect the ImageNet
images used for training of this concept detector in Fig. 6, we
observe that the color beads of the abacus are visually similar to
typical Birthday objects such as candles and balloons. When the
quality of concept detectors further improves, we expect better
selection in the conceptlets.
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Fig. 5. Conceptlets for various events as automatically selected from event video examples by our algorithm. Font size correlates with automatically estimated
informativeness. Note that the algorithm finds concepts that make sense, most of the time, without being programmed to do so. (a) Batting a run. (b) Making a
cake. (c) Landing a fish. (d) Flash mob gathering. (e) Biking. (f) Birthday.

Fig. 6. Example images used for training the concept detectors: ‘Baseball’,
‘Hockey’, ‘Candle’ and ‘Abacus’ (top to bottom). The visual similarity between
‘Baseball’ and ‘Hockey’ causes that our algorithm mistakenly selects ‘Hockey’
into the conceptlet for the event Battingin run. Likewise, ‘Abacus’ results in a
high probability in the videos containing Birthday events since the color beads
of the abacus are visually similar to typical Birthday objects such as candles and
balloons.

To explore the correlation between the selected concepts and
the source of these concepts when using both the TRECVID and
ImageNet annotations, we plot the fraction of selected concepts

by their training source for all 25 events of MediaMill MED
2012 and the 15 events of Columbia CV in Fig. 7. As can be
observed, conceptlets automatically select the most informative
concepts independent of their training source.
Since conceptlets need event video training examples we also

investigated howmany event videos are sufficient for conceptlet
discovery. On the TRECVID MED 2010 dataset we train event
classifiers using 10, 20, 30, and 40 positive examples, and repeat
the process of selecting examples 10 times. We compare event
classifiers using all concepts with a linear SVM [26] versus our
conceptlets with a linear SVM. The result in Fig. 8 shows that
training size affects the performance, more examples are bene-
ficial for both the baseline and conceplets, but conceptlets are
always better, even when examples are scarce.
For future reference we also evaluate our conceptlets on

the TRECVID 2013 MED test and Kindred sets [17]. While
low-level feature representations are known to be more accu-
rate on these benchmarks [17], we focus in our comparison
on semantic representations and consider the state-of-the-art
approach by Habibian et al. [32]. We observe similar behavior
as before. Event classification using all concepts with a linear
SVM (0.270, 0.289) is outperformed by all concepts with a
non-linear SVM (0.296, 0.309), but conceptlets are best (0.309,
0.325).
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Fig. 7. Correlation between the selected concepts and their training source per
event in (a) MediaMill 2012 MED and (b) Columbia CV. Conceptlets automat-
ically select the most informative concepts independent of their training source.
(a) MediaMill 2012 MED. (b) Columbia CV.

Fig. 8. Effect of number of positive event examples on classification with con-
ceptlets (red) or an all-concept baseline (blue). Conceptlets are always better,
even when examples are scarce.

The results of experiment 3 affirm that event classification
using conceptlets outperforms a bank using all concepts and al-
ways contains significantly less semantic concepts, which often
appear descriptive.

D. Conceptlets Versus Other Selections

We plot the result of experiment 4 in Fig. 9. On all three
datasets conceptlets outperform selections based on Minimum
Redundancy Maximum Relevancy and L1-Regularized Lo-
gistic Regression.
On the TRECVID 2010 MED dataset (Fig. 9(b)), conceptlets

score 0.483MAPwhere Minimum RedundancyMaximumRel-
evancy and L1-Regularized Logistic Regression score 0.406

Fig. 9. Experiment 4. Conceptlets versus other selections. For video event clas-
sification, conceptlets selected with our proposed cross-entropy algorithm out-
perform alternative concept selection algorithms. (a) TRECVID 2010 MED.
(b) MediaMill 2012 MED. (c) Columbia CV.

and 0.403. Where our algorithm selects 83, the others select 120
and 165. On this dataset we also compare with the initial version
this work [51], with a MAP of 0.443. We improve our previous
work by 10.0%, which we attribute to the fact that we optimize
the conceptlet size, where we previously relied on fixed sizes
only.
On the MediaMill 2012 MED dataset Minimum Redundancy

Maximum Relevancy scores 0.304 MAP and L1-Regularized
Logistic Regression scores 0.318 MAP, where conceptlets ob-
tain 0.329 MAP (Fig. 9(b)). Again we reach better numbers
with fewer selected concepts. Where conceptlets need on av-
erage 245 concepts to reach this results, the others need many
more (458 vs 374). For the event Flash mob gathering, a con-
ceptlet with 40 concepts obtains 0.574 AP where Minimum Re-
dundancyMaximumRelevancy reaches 0.499APwith 600 con-
cepts and L1-Regularized Logistic Regression scores 0.516 AP
with 298 concepts. The results on the Columbia CV dataset in
Fig. 9(c) show similar behavior. Conceptlets obtain 0.625 MAP
using on average 93 concepts per event where the others per-
form worse with more concepts selected (0.565 MAP/452 con-
cepts vs 0.598 MAP/440 concepts).
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TABLE IV
PROPERTIES OF CONCEPTLETS AS A FUNCTION OF BANK SIZES CONSIDERED DURING CROSS-ENTROPY OPTIMIZATION. WE CONSIDER SIZES IN THE RANGE 10 TO
90, WITH A STEP SIZE OF 20. ALL RESULTS AVERAGED OVER THREE EVENTS FROM THE TRECVID 2010 MED DATASET USING THE CONCEPT BANK OF MERLER
ET AL. [26]. IN ADDITION TO L1-REGULARIZED LOGISTIC REGRESSION (LRLR) AND MINIMUM REDUNDANCY MAXIMUM RELEVANCY (MRMR) AND THE INITIAL
VERSION OF THIS WORK [51] WE ALSO REPORT FOUR OTHER RECENT FEATURE SELECTIONS. CONCEPTLETS ARE COMPUTATIONALLY MORE DEMANDING

THAN THE OTHER SELECTIONS, BUT ALWAYS RESULT IN THE BEST EVENT CLASSIFICATION ACCURACY

When we inspect the selected concepts for the event
Landing fish for Minimum Redundancy Maximum Relevancy
(data not shown) we find several redundant concepts such
as ‘Adult-Female-Human’, ‘Female-Human-Face-Closeup’,
‘Female-Person’, ‘Single-Person-Female’, and ‘Two-People’
which have a negative effect on the event classification result.
Moreover, the redundancy makes the description less precise.
Recall that Minimum Redundancy Maximum Relevancy ranks
the concepts first based on the ratio of the relevance of the
concept to the redundancy of the concepts in the set. Making
this selection sensitive to the accuracy of the concept detectors.
Moreover, some low ranked concept detectors may have poor
average precision in isolation, but when combined with other
concepts lead to a better event classification. Our algorithm is
less sensitive to the performance of concept detectors. If the
presence of a concept, either an accurate or inaccurate one, im-
proves the accuracy of the event classifier it will try to maintain
it in the conceptlet. Selection by L1-Regularized Logistic Re-
gression is more competitive, but the selection always contains
more concepts than our conceptlets. In addition to being less
accurate than conceptlets, selection by L1-Regularized Logistic
Regression is less descriptive.
In Table IV we report the run time and mean average preci-

sion of conceptlets as a function of the number of bank sizes
considered. We consider sizes in the range 10 to 100, with a
step size of 10. In addition to L1-Regularized Logistic Regres-
sion, Minimum Redundancy Maximum Relevancy and the ini-
tial version of this work [51] we also report four other recent
feature selections. As expected, the best result is obtained when
we consider all sizes in the range, and the worst result is ob-
tained when we only consider banks of 10 concepts. When we
consider all ranges, without any preselection, conceptlets need
90 minutes per event on average. Using a non-linear instead of
a linear SVM with conceptlets increases the MAP from 0.482
to 0.513, but needs 425 minutes per event on average. This is
longer than the other selections, but can be sped up by paral-
lelization when execution time is an issue. Conceptlets always
result in better mean average precision.
We conclude that conceptlets, at the expense of a longer run

time, are more effective than Minimum Redundancy Maximum
Relevancy and L1-Regularized Logistic Regression by consid-
ering more discriminant and less redundant concepts.

VI. CONCLUSION

We study event classification based on banks of concept de-
tectors. Different from existing work, which simply includes

in the bank all available detectors, we propose an algorithm
that learns to find from examples the most informative con-
cept-subset per event, which we call the conceptlet. We formu-
late finding the conceptlet as an importance sampling problem
which can be solved with a near-optimal cross-entropy opti-
mization. We study the behavior of conceptlets by performing
four experiments on three unconstrained web video collection
from the 2010 and 2012 TRECVID Multimedia Event Detec-
tion task and the Columbia Consumer Video datasets using a
total of 1,346 pre-trained concept detectors.
The results of experiment 1 show that there are individual

concepts that are more discriminative and descriptive than
others for representing events in internet video. The results of
experiment 2 give an indication that large banks of concept
detectors are important for covering a variety of complex
events, as they may appear in unconstrained video. In general,
the event classification accuracy increases with the number of
concept detectors in the bank. However, we show that some
concept-subsets are more informative than others for specific
events, and this may result in improved event classification
accuracy. The results of experiment 3 confirm that event classi-
fication using conceptlet outperform banks using all concepts,
and always contains significantly less concept detectors. Fi-
nally, results of experiment 4 reveal that our conceptlets, at the
expense of a longer run time, are more effective than selected
concepts by state-of-the-art feature selection algorithms, by
considering more discriminant and less redundant concepts.
What is more, the conceptlets make sense for the events of
interest, without being programmed to do so.
Further improvements of conceptlets with respect to the re-

duction of training examples, run time efficiency, classification
accuracy and event descriptiveness can be envisioned, for ex-
ample by the use of semantic query-by-video solutions [69]. We
plan to elaborate on this direction in future work. For the mo-
ment we conclude that selective use of semantic concepts, by
means of conceptlets, is beneficial for classifying video events
and opens up the possibility to automatically describe and ex-
plain why a particular video was found.
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