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ABSTRACT
This paper proposes a new semantic video representation
for few and zero example event detection and unsupervised
video event summarization. Different from existing works,
which obtain a semantic representation by training concepts
over images or entire video clips, we propose an algorithm
that learns a set of relevant frames as the concept prototypes
from web video examples, without the need for frame-level
annotations, and use them for representing an event video.
We formulate the problem of learning the concept proto-
types as seeking the frames closest to the densest region in
the feature space of video frames from both positive and
negative training videos of a target concept. We study the
behavior of our video event representation based on concept
prototypes by performing three experiments on challenging
web videos from the TRECVID 2013 multimedia event de-
tection task and the MED-summaries dataset. Our exper-
iments establish that i) Event detection accuracy increases
when mapping each video into concept prototype space. ii)
Zero-example event detection increases by analyzing each
frame of a video individually in concept prototype space,
rather than considering the holistic videos. iii) Unsuper-
vised video event summarization using concept prototypes
is more accurate than using video-level concept detectors.

Categories and Subject Descriptors
1.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—Video Analysis

Keywords
concept prototype, video event detection and summarization

1. INTRODUCTION
The goal of this paper is to detect an event from very few

examples and to summarize a video containing the event in
its most descriptive frames. The common tactic for few-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ICMR’15, June 23–26, 2015, Shanghai, China.
Copyright c© 2015 ACM 978-1-4503-3274-3/15/06 ...$15.00
http://dx.doi.org/10.1145/2671188.2749402.

Figure 1: We propose an algorithm that learns from
web data a set of relevant frames to the concept,
which we call concept prototypes (y-axis). We en-
code videos as concept prototypes (x-axis) and show
that for unseen videos it is able to detect events from
few or zero examples. In addition, we demonstrate
how the new representation can be exploited for un-
supervised video event summarization (red border).

and zero-example event detection is to rely on a video rep-
resentation consisting of concept detector scores indicating
presence of concepts like cake, rock or tire in the video [4,
5, 7, 10, 11, 17, 19, 22, 25]. Such a representation is known
to outperform the traditional low-level representation when
examples are scarce [3,9,18,23]. In [4,8,12,24], it is further
shown that semantic representations are capable of event
detection without examples, from just a textual description
of an event (and the corresponding event-to-concept map-
ping). We observe that concept detectors are included in the
representation whenever they are available and are learned
from either image- or video-level annotations. In this paper
we propose a new video representation for few- and zero-
example event detection, which also uses concept detectors,
but we place special emphasis on what concepts to include
and from what video-frames they are learned.

In [25] Merler et al. used a mixture of 280 relevant and ir-
relevant concepts to the events which are trained from thou-
sands of labeled web images. In [10] Habibian et al. used a
collection of concepts consisting of 1,346 relevant and irrel-
evant concepts to the event trained from ImageNet [1] and
TRECVID [27]. In [22] Mazloom et al. proposed a learn-



ing algorithm to find conceptlets, a set of concept detectors
deemed relevant to an event, from the same 1,346 concepts
used in [10]. In [4] Chen et al. use a collection of 2,000
concepts trained on Flickr images, deemed relevant to an
event from analyzing the textual description. We note that
in all these works [4,10,22,25] concept detectors are trained
from a collection of images, which have the appealing ability
that they can be applied on each frame of a video. However
the source of training data used in these methods is im-
ages from Flickr and ImageNet, applying them on frames
extracted from web video results in an unreliable video rep-
resentation due to the domain mismatch between images and
videos. To counter the domain mismatch, recently several
works propose to use web video for training concept detec-
tors [2,8,9,19,31], which is not only much more efficient, but
also suffers less from the domain mismatch problem. How-
ever, the drawback of these works is that they operate on
a video-level, although concepts and events may be visible
in a part of the video only. Hence, they include many ir-
relevant frames in their pooled representation leading to a
sub-optimal representation.

In [14–16] methods are proposed that find relevant video
parts by formulating the problem of video event detection as
multiple instance learning. These works show the efficiency
of training an event model only on relevant parts of video.
Inspired by [14–16], in this paper we attempt to find an
informative representation per concept by considering only
the frames from web-video that are relevant to the concept,
without using frame-level annotations. We call the infor-
mative subset of frames per concept the concept prototypes
and use them to represent video for few- and zero-example
event detection.

In [6], Ding et al. propose a method to generate a text
which summarizes the important information in a video of an
event. The algorithm selects relevant concepts to the event
using lots of video examples. We also aim for video event
summarization, but we use concept prototypes by selecting
the relevant frames of a video to the event without relying on
any video examples. In [28], Potapov et al. proposed video
event summarization by learning from lots of positive and
negative video examples. Each event model is applied on
various segments of a video, the segments with the highest
scores are returned as summary. Since they train a model
over the video-level representation of videos in the train-
ing set, including all irrelevant parts, applying their model
on small video segments are unlikely to reflect an accurate
score. Since our prototypes are a frame-level representation
of concepts deemed relevant to the event, we have the ability
of applying them on each video frame and computing a reli-
able score per frame without the need for any event model.
We simply consider the highest scoring frames as the video
summary, see Figure 1. To the best of our knowledge no
method currently exists in the literature for summarizing a
video event using only a textual event definition.

We make the following contributions:

• We model selecting the concept prototypes out of a
large set of frames of positive videos per concept, as
seeking the frames closest to the densest region in the
feature space of positive and negative videos.

• We introduce concept prototypes as a new semantic
video representation for few example event detection.

• We show the effectiveness of the video representation

Figure 2: The flow chart for our proposal which con-
sist of three modules. At first, we propose an algo-
rithm which learns from a video dataset and corre-
sponding captions a set of prototypes per concept.
Secondly, we construct a prototype dictionary by
collecting concept prototypes of all concepts and en-
code the video event in the dictionary. At the end
we show the ability of our video representation for
few- and zero-example event detection and unsuper-
vised event summarization.

by concept prototypes in few- and zero-example event
detection as well as unsupervised event summarization.

We organize the remainder of this paper as follows. We
present our encoding using concept prototypes in Section 2.
We introduce the experimental setup on the challenging
TRECVID 2013 Multimedia Event Detection [26] and MED-
summaries datasets [28] in Section 3. Results are presented
in Section 4. We conclude in Section 5.

2. ENCODING CONCEPT PROTOTYPES
In this paper we aim to arrive at a semantic space with

the ability for video event detection and summarization. We
propose concept prototypes and leverage it for a new video
representation. In this work, we define concept prototypes
as a set of diversified video frames with variant visual ap-
pearance depicting the same concept in videos. For example,
one can reasonably expect that for the concept car, proto-
types are those frames related to various types and models
of cars such as frames containing city cars, sport car, truck,.
Because of their diversity, prototypes are beneficial over us-
ing a set of frames which describe only a specific type of
car, e.g. sport car, or a set of frames which includes irrel-
evant frames to the concept car. In other words, concept
prototypes for an arbitrary concept are those frames which
appear in the most informative parts of the positive videos
and not in the negative videos of the concept.



Since the concept prototypes are frame-level detectors, we
have the ability of applying them in each frame of a video,
which has several benefits. Firstly, by representing each
frame of a video by concept prototypes, we can analyze each
frame of the video individually. It gives us the opportunity
of proposing a powerful video representation by aggregating
all frames of a video in concept prototype space. Secondly,
it allows us to do zero-example video event detection by con-
sidering the score of the frames in a video to each concept
prototypes, and therefore help localize the key information
in the video for zero shot event detection. It also offers us to
to do unsupervised video event summarization by selecting
the relevant frames of video to the event.

Our framework contains three parts, schematically illus-
trated in Figure 2. At first, we learn from a video dataset
harvested from the web a set of concept prototypes per con-
cept. Secondly, we construct a prototype dictionary by col-
lecting concept prototypes of all concepts and encode each
video from a train and test video event set in the prototype
dictionary. At the end we show the ability of the concept
prototype encoding for event video detection and summa-
rization. Each part is detailed next.

2.1 Concept prototype learning
Our algorithm for learning concept prototypes of an ar-

bitrary concept consists of two steps. i) Scoring positive
frames which aims to compute a score for each frame of a
positive videos containing the concept. ii) Selecting a subset
of positive frames and consider them as concept prototypes.

Scoring positive frames: Suppose D is a dataset of web
videos which are annotated for d concepts in a collection
C = {c1, c2, ..., cd}. Let consider Xc ⊂ D is a set of n
video/label pairs for arbitrary concept c ∈ C. We denote
positive videos as V +

i which consist of n+
i frames v+ij , j =

1, ..., n+
i . l+ shown the number of positive videos in Xc,

Xc = {{V +
i }

l+

i=1, {V −i }
l−
i=1}. Similarly, V −i , n−i , v−ij , and l−

represent negative videos, the number of frames in the video,
the jth frames in the video, and number of negative video
in Xc respectively. We suppose all frames vij belong to the
feature space Rm. We collect all frames of positive videos V +

i

of concept c in Pc , Pc = {vij}(i = 1, . . . , l+, j = 1, . . . , n+
i ).

To compute a score per frame v ∈ Pc we need a function
to precisely return a value for v indicating its confidence of
being applied as a prototype of the concept. It has to de-
scribe how relevant the frame v is w.r.t. concept c in the
positive videos, V +

i , and while departing away from the neg-
ative videos, V −i . We use a diverse density function which is
well known and frequently used in machine learning [20,21].
The Diverse Density function (DD) at frame v ∈ Pc returns
a real value which expresses the probability that frame v
agrees with the densest regions within the frames of both
positive and negative videos. It reflects the coherence with
the visual appearance of the concept and is defined as:

DD(v) = Pr(v|V +
1 , ...., V

+
l , V

−
1 , ..., V −l ) (1)

where Pr() represents the probability function. By apply-
ing Bayes’rule to Eq. 1 and assuming that all videos are
conditionally independent given v, we write Eq. 1 as:

DD(v) =

l+∏
i=1

Pr(v|V +
i )

l−∏
i=1

Pr(v|V −i ) (2)

To estimate Pr(v|V +
i ) and Pr(v|V −i ) we use the proposed

Table 1: Pseudocode of learning concept prototypes
for concept category c.

INPUT: Positive videos for concept c (V +
i ),

Negative videos for concept c (V −i ),
Threshold (T ), and coefficient α

OUTPUT: Concept prototypes for concept c (CPc)
1. Set Pc be the set of all frames of videos in V +

i

2. H = [] an array for keeping DD values

3. M = length(Pc)

4. for q = 1, . . . ,M

5. H(q) = compute DD(Pc(q)) using Eq. 2

6. end

7. i = 1

8. Repeat

9. Select concept prototype, a frame of Pc corespond to

maximum value of DD

CPc(i) = Pc(find(H = max(H)))

10. Remove from H all elements a satisfying

‖CPc(i)− Pc(a)‖ < α‖CPc(i)‖ OR H(a) < T

11. i = i + 1

12. While (Pc¬ = [])

13. Output: CPc, concept prototypes for concept c

way in [20]:

Pr(v|V +
i ) = max

j
exp

(
−‖v+ij − v‖

)
(3)

Pr(v|V −i ) = 1−max
j

exp
(
−‖v+ij − v‖

)
(4)

Eq.(3) uses the maximum similarity between all frames in
a positive video and the given frame as the probability of
choosing v as a prototype of video V +

i . On the contrary,
Eq.(4) measures how dissimilar a negative video should de-
part from the candidate prototype frame. After considering
Eq.(3) and Eq.(4) in Eq.(2) the DD function computes a real
value between 0 and 1 for frame v. A larger value of DD at
frame v indicates a higher probability that the frame v fits
better with the frames from all positive videos than with
those from all negative videos, and therefore have higher
chance to be chosen as a concept prototype.

Selecting concept prototypes: After computing a score
per each frame of Pc, we select the concept prototypes for
concept c by considering two constraints: i) They need to be
distinctive from each other so that the prototype collection
has no redundancy. ii) They need to have large DD values.
Applying the first constraint, we remove some of the frames
that are similar to each other. In our algorithm we control
the repetition of frames by considering coefficient α. It is
a parameter which defines the degree of closeness of frames
to concept prototypes. Its value is between 0 and 1. Closer
to 1 causes our algorithm generate small number of pro-
totypes per concept. The second constraint limits concept
prototypes to those that are most informative in terms of
co-occurrence in different positive videos. In our algorithm,
we consider it by picking frames with DD value greater than
a threshold T .

Our learning algorithm for obtaining concept prototypes
for concept category c is summarized in Table 1. The in-
puts are a set of positive and negative videos for concept c,
threshold T and coefficient α which are parameters to define



Figure 3: Learned prototypes for five arbitrary con-
cepts. Prototypes ordered from left (best) to right.

the number of concept prototypes for concept c. The pseudo
code learns a set of concept prototypes for concept c which
is represented by CPc. In the pseudo code in Table 1, lines
1-6 compute the value of the DD function for all frames of
positive videos in Pc. Line 7-12 describe an iterative process
to select a collection of distinct concept prototypes. In each
iteration, a frame of Pc with the maximum value ofDD func-
tion is selected as a concept prototype (line 9). The frames
of Pc that are close to the selected concept prototype or that
have DD values lower than a threshold are removed from Pc

(line 10). A new iteration starts when there is no any frame
in Pc. In Figure 3 we visualize several concept prototypes.

2.2 Video encoding
In this section we first describe the process of constructing

a prototype dictionary using concept prototypes, then we
explain how to encode video events of train and test set into
the prototype dictionary.
Constructing prototype dictionary : To make a proto-

type dictionary we first learn m concept prototypes for each
of d concept ci ∈ C using the method which we explained
in section 2.1. We consider CPci = {cpi1, cpi2, ..., cpim} as
concept prototypes for concept ci. Then we construct a pro-
totype dictionary PD by collecting all concept prototypes of
concepts in C, PD = {CPc1 , CPc2 , ..., CPcd} which element
cpjk is kth concept prototype of jth concept.

Encoding video in prototype dictionary : We consider
each element cpjk as a feature in new feature space FPD.
We define a function gjk(:) to compute the value of the
feature cpjk on video event V , which consist of n frames
V = {v1, v2, ..., vn} as:

gjk(V ) = Pr(cpjk|V ) = max
i=1,...,n

similarity(cpjk, vi). (5)

We can interpret gjk(V ) as a measure of similarity between
the concept prototype cpjk and the video event V . It is
determined by the value of similarity between concept pro-
totype cpjk and the closest frame in the video V .

As a result, each video event V can be encoded in FPD

using all concept prototypes in PD. It can be defined as a
point ,ϕ(V ), in feature space FPD which define as:

ϕ(V ) = [g11(V ), g12(V ), ..., gjk(V ), ..., gdm(V )]T (6)

where each element of ϕ(V ) is defined by one concept proto-

type and one frame from the video event V , the frame that
is closest to the concept prototype. Also it can be viewed as
a measure of the degree that a concept prototype is visible
in the video event V .

2.3 Event detection and summarization
After representing video events in concept prototypes space,

we use it for the problem of few- and zero-example event de-
tection, and unsupervised video event summarization.

Few-example event detection : Suppose TR = {V +
1 , ...,

V +
n+ , V

−
1 , ..., V −

n−} is a train set consist of n+ positive videos

and n− negative videos, and TE = {W1, ...,Wn} is a test
sets for an event category e. By mapping each video of
train and test set to concept prototype space using Eq. 6
we define TR and TE as two matrix representation of all
videos in FPD:

TR = [ϕ(V +
1 ), ..., ϕ(V +

n+), ϕ(V −1 ), ..., ϕ(V −
n−)]T (7)

TE = [ϕ(W1), ..., ϕ(Wn)]T (8)

Each row of TR and TE represents a video, kth column of
TR and TE represent kth feature in FPD. We train a model
on TR and report the result of event detection accuracy on
TE.

Zero-example event detection : In this scenario there
is only a textual query explaining the event. Suppose T is
an explanation for event e which consist of n words, T =
{w1, w2, ..., wn}, C = {c1, c2, ..., cd} is a set of concepts, and
PD is a prototype dictionary which consists of m·d elements
(m concept prototypes for each of d concept in C). Let’s
consider Wi = {wi1, wi2, ..., wil}, which consist of l frames,
be a video of event e in test set TE. We use following steps
for computing a score per each video Wi in TE. i) At first
we define a binary representation for event e as a query,
Q = [a1,a2, ...,ad] ∈ FPD, by comparing the concepts in C
with the words in T . The value of ai computes as:

ai =

{ −→
1 ∈ Nm if ci ∈ T
−→
0 ∈ Nm if ci /∈ T

ii) We map each frame of Wi to prototype dictionary PD
by computing similarity between each frame of Wi and each
of concept prototypes in PD. As a result, each frame of
Wi is represented as a vector of concept prototype score,
Wi = {xi1, xi2, ..., xil}, xij ∈ FPD. iii) We compute a score
per each frame of Wi by multiplying query Q with xij , j =
1, ..., l and define vector Y = [Q · xi1, Q · xi2, ..., Q · xil]. The
value of jth element of Y describe how much the content
of the jth frame of Wi matches to event e. At the end
iv) We score video Wi with maximum value of vector Y ,
S(Wi) = max(Y ).

After computing a score S per each video Wi, i = 1, ..., n
of TE, we sort the videos with their scores and compute the
accuracy of zero-example event detection for event e.

Unsupervised video event summarization : We demon-
strate the feasibility of using our concept prototypes, for
summarizing the content of a video event by selecting rel-
evant frames to an event category. Suppose Wi is a pos-
itive video of event category e consist of l frame, Wi =
{wi1, wi2, ..., wil}. We follow the first three steps of zero-
example event detection, to compute vector Y which the
value of jth element of Y show how much the content of the
jth frame of Wi is match to event e. We sort the vector Y



from the best frame, that completely matches the content
of the event, to the worst frame. We select the best frames
based on how many percent of frames of video Wi we want
to report as summarization of Wi.

3. EXPERIMENTAL SETUP

3.1 Datasets
In our experiments we report on two large corpora of chal-

lenging real-world web video: the TRECVID 2013 Multi-
media Event Detection dataset [26], and MED-summaries
provided by Potapov et al. [28].

Event detection: TRECVID 2013 MED [26]. This
corpus contains 56k user-generated web videos with a large
variation in quality, length and content of 20 real-world
events. This corpus consists of several partitions, we con-
sider the Event Kit training, Background training, and MED
test set, containing about 200, 5K, and 27K, videos. We
follow the 10Ex evaluation procedure outlined by the NIST
TRECVID event detection task [27]. It means that for each
event the training data consist of 10 positive videos from
the Event Kit training data along with about 5K negative
videos from the Background training data. We also consider
the 0Ex evaluation procedure as specified by NIST, where
we don’t have any positive video example available. We rely
only on a provided brief textual definition of the event con-
taining some evidences of concepts which can be expected
to be visible in positive video examples of a particular event.

Event summary: MED-summaries [28]. This set con-
sist of 160 videos selected from the TRECVID 2011 Multi-
media Event Detection task: the validation set consist of 60
videos and the test set consist of 100 videos. Every segment
of all these 160 videos is annotated with a category-specific
importance value (0, 0.333, 0.666, and 1). All segments
of all videos are annotated by different users to obtain the
ground truth video summary for evaluation. High scores in-
dicate the human annotators consider the segment is close
to the event of interest. We report all results on the test
set containing 10 videos for a total of 10 events. We adapt
the provided annotation format from segment level to frame
level by simply propagating the segment annotation to each
of its frames.

3.2 Implementation details
Concept prototypes training data. To train our con-

cept prototypes, we use a video dataset that is disjunct from
both the TRECVID 2013 MED and MED summaries collec-
tions. We adapt the VideoStory46K from Habibian et al. [9]
which contains a collection of 46k video from YouTube. Ev-
ery video has a short title caption provided by the user who
uploaded the video. From these captions we generate in-
dividual terms which serves as positive concept labels for
the corresponding video. In total there are 19,159 unique
terms in the captions. We filter the terms by: removing
stop words, noisy terms, terms which are not visually de-
tectable such as God (we used the visualness filter from [9]),
terms with frequency less than 100, and keep those terms
which match with the words in the definition text of the
events. After this step we reach to a list of 479 different
concept labels.

Features. For representing the frames in all of our datasets
we use deep learning features. At first we extract the frames
of videos uniformly every 2 seconds. Then, similar to [13], we

use a pre-trained convolutional neural network for mapping
every frame of videos to a 4,096-dimensional feature vector
which is the output of the second fully connected layer of the
convolutional neural network. The network is pre-trained on
all the 15,0254 categories in the ImageNet dataset, for which
at least 50 positive examples are available.

Concept prototypes learning. For learning concept
prototypes for each of the 479 concepts we repeat the fol-
lowing steps. i) We construct a set of videos for each concept
label by considering all its positive videos and supplement
it with negatives up to ten times the number of positives
by random sampling from other concept labels. ii) We ap-
ply our concept prototypes learning algorithm (Section 2.1).
We set parameter T as the average of the maximum and
minimum of the DD function in H (Table 1), and we em-
pirically found 0.05 to be a good value for α. We map the
videos from TRECVID 2013 MED and MED-summaries to
concept prototypes space using cosine similarity.

Event detection. We train for each event a one-versus-
all linear support vector machine [29] and fix the value of its
regularization parameter C to 1.

3.3 Experiments
In order to establish the effectiveness of our concept pro-

totypes for event detection and summarization we perform
three experiments.

Experiment 1: Few-example event detection In this ex-
periment we compare the event detection accuracy of our
proposed concept prototype encoding versus five baselines.
Baseline 1: DeepNet. Video representation using deep learn-
ing features. Baseline 2: 15k-Concepts. A video event rep-
resentation consisting of 15k concept detectors trained on
ImageNet (inspired by [10]). Baseline 3: Conceptlets [22].
Video representation consisting of the most informative Image-
Net 15K concepts per event. Baseline 4: 479-Concepts.
Video representation using 479 video-level concept detec-
tors trained on VideoStory46k (inspired by [11]). Baseline
5: VideoStory [9]. Video event representation which strives
to encode the caption of a video rather than a single word.
All six methods are evaluated by their event detection per-
formance on the TRECVID 2013 MED test set.

Experiment 2: Zero-example event detection We com-
pare the accuracy of our concept prototypes for zero-example
event detection versus four baselines. Baseline 1: Flickr con-
cepts. As a first baseline we report the result in [4] which
used 2,000 relevant concepts per event as trained from flickr
images. Baseline 2: 15k-Concepts. Same as above. Baseline
3: Composite concepts [8]. Video representation using 138
video-level concept detectors which are the result of com-
bining several concepts using logical connectors. Baseline
4: 479-Concepts. Video representation using 479 video-
level concept detectors trained on VideoStory46k. For all
methods we build a query Q per event as a binary vector
indicating presence or absence of the concept in the event
description, as detailed in Section 2.3. We compute a score
for a video in the test set by multiplying Q with a histogram
containing the scores of concept detectors when applied on
the video. From the resulting ranking, we compute the zero-
example accuracy. We again evaluate the accuracy of all
methods on the TRECVID 2013 MED test set.

Experiment 3: Unsupervised event summarization We
compare the accuracy of our concept prototypes in video
event summarization versus three baselines. Baseline 1:



Table 2: Experiment 1: Few-example event detection on TRECVID 2013 MED test set. Best AP result per
event in bold.

Event DeepNet 15k-Concepts [10] Conceptlet [22] 479-Concepts [11] VideoStory [9] This paper

Birthday party 0.137 0.114 0.145 0.146 0.118 0.188
Changing a vehicle tire 0.391 0.388 0.401 0.444 0.103 0.464
Flash mob gathering 0.405 0.347 0.377 0.425 0.535 0.439
Getting a vehicle unstuck 0.334 0.323 0.390 0.377 0.319 0.418
Grooming an animal 0.084 0.108 0.110 0.126 0.151 0.154
Making a sandwich 0.031 0.074 0.075 0.100 0.074 0.131
Parade 0.171 0.109 0.145 0.246 0.452 0.303
Parkour 0.320 0.309 0.319 0.317 0.721 0.326
Repairing an appliance 0.169 0.127 0.133 0.320 0.184 0.244
Working on a sewing project 0.058 0.071 0.103 0.072 0.151 0.109
Attempting a bike trick 0.054 0.030 0.047 0.106 0.061 0.144
Cleaning an appliance 0.021 0.019 0.020 0.031 0.078 0.055
Dog show 0.232 0.134 0.165 0.379 0.354 0.313
Giving directions to a location 0.012 0.005 0.008 0.020 0.004 0.022
Marriage proposal 0.002 0.002 0.003 0.004 0.004 0.004
Renovating a home 0.019 0.024 0.032 0.056 0.051 0.033
Rock climbing 0.070 0.063 0.083 0.080 0.100 0.110
Town hall meeting 0.268 0.201 0.229 0.158 0.118 0.290
Winning a race without a vehicle 0.150 0.126 0.164 0.116 0.217 0.182
Working on a metal crafts project 0.054 0.068 0.078 0.116 0.118 0.144

MAP 0.150 0.135 0.156 0.181 0.196 0.202

Random. Video event summarization with relevant frames
selected randomly. To cancel out the accidental effects of
randomness, we repeat the random frame selection 10 times
and report the mean. Baseline 2: 15k-Concepts. A video
event summarization with relevant frames selected using 15k
ImageNet concepts. Baseline 3: 479-Concepts. A video
event summarization with relevant frames selected using con-
cept detectors. Oracle Video event summarization using the
ground truth user annotation value from [28], to create an
upper bound for video event summarization. In Baseline
2 and 3, similar to our method in section 2.3, we make a
vector Y with the value of each of its elements being the re-
sult of multiplying Q, a binary representation of event, and
a histogram of applying concept detectors on each frame
of video. Then we follow the steps which we explained in
Section 2.3 for summarizing the video. We evaluated the ac-
curacy of all methods in video event summarization on the
MED-summaries dataset [28] by keeping 10, 20, 30, ..., 100
percent of the frames per video. For those videos annotated
by more than one user, we report the mean accuracy. At the
end we report the mean accuracy for all 10 videos of each of
the 10 events.

Evaluation criteria For event detection performance we
consider the average precision (AP) [30]. We also report the
average performance over all events as the mean average pre-
cision (MAP). Similar to [28], for evaluating event summa-
rization performance we propose a new metric, importance
ratio. We defined information ratio (IR) as average of user
annotation value of selected p frames of the video. The value
of IR shows the quality of the video event summarization.
We consider the average of the p highest user annotation
value as a ground truth. The closeness of the value of IR to
ground truth value shows the better summarization.

4. RESULTS

4.1 Few-example event detection
We show the result of experiment 1 in Table 2. Results

demonstrate that the video event representation based on
our concept prototypes performs better than all baselines.
Our concept prototypes reach 0.202 MAP in event detec-
tion, where using DeepNet feature, 15k-Concepts, Concept-

let, 479-Concepts, and VideoStory results in 0.150, 0.135,
0.156, 0.181, and 0.196 respectively.

We explain the good results of our concept prototypes
from several observations. First, most of the concepts in
15k-concepts are irrelevant to the event categories. More-
over, as these detectors originate from ImageNet, they are
trained on images and not on video leading to a domain-
mismatch. Using Conceptlets [22] to find the most informa-
tive concepts, out of the 15k, per event improves the event
detection accuracy, but it cannot compensate for the domain
mismatch. Interestingly, learning the events directly from
DeepNet features is advantageous over using 15k-concepts.
However, when we learn the detectors from video annota-
tions, as suggested in [11], result improve considerably (from
0.150 to 0.181). VideoStory further improves upon this re-
sult, but our concept prototypes are more accurate. There
are two reasons. First, VideoStory trains detectors using all
frames from both positive and negative training videos. By
adding lots of irrelevant frames it leads to a noisy video con-
cept representations. In contrast, our concept prototypes
identify the relevant frames of video only, making the repre-
sentation more clean. Secondly, since the concept detectors
from VideoStory are trained over a video-level representa-
tion, they have to apply on a video-level representation for
event detection as well. Since most of the events happen in a
part of the video only, aggregating all frames is sub-optimal.
In contrast, our concept prototypes have the ability to ap-
ply the concepts on individual frames, which decreases the
effect of irrelevant frames.

The results of experiment 1 confirm that few-example
event detection accuracy profits from using concepts that
are relevant to the event and which are learned from a video,
rather than the image dataset. Moreover, it is beneficial to
represent video using concept prototypes as the influence of
irrelevant frames is reduced.

4.2 Zero-example event detection
The results of this experiment are shown in Table 3. It

indicates our concept prototypes outperform all four base-
lines in zero-example event detection. We reach to 0.119
MAP where the alternatives reach to 0.024, 0.032, 0.063,
and 0.100 MAP. Since our concept prototypes are frame-



Table 3: Experiment 2: Zero-example event detection on TRECVID 2013 MED test set. Best AP result per
event in bold.

Event Flickr concepts [4] 15k-Concepts [10] Composite Concepts [8] 479-Concepts [11] This paper

Birthday party 0.032 0.022 0.076 0.096 0.154
Changing a vehicle tire 0.038 0.099 0.018 0.238 0.320
Flash mob gathering 0.058 0.104 0.319 0.266 0.271
Getting a vehicle unstuck 0.010 0.107 0.055 0.356 0.406
Grooming an animal 0.011 0.019 0.009 0.079 0.095
Making a sandwich 0.028 0.021 0.079 0.082 0.164
Parade 0.130 0.094 0.223 0.221 0.240
Parkour 0.027 0.020 0.021 0.077 0.112
Repairing an appliance 0.048 0.078 0.025 0.221 0.213
Working on a sewing project 0.012 0.016 0.014 0.087 0.089
Attempting a bike trick 0.003 0.017 0.021 0.056 0.061
Cleaning an appliance 0.013 0.006 0.006 0.022 0.026
Dog show 0.003 0.003 0.001 0.011 0.011
Giving directions to a location 0.002 0.004 0.025 0.004 0.008
Marriage proposal 0.009 0.004 0.002 0.003 0.005
Renovating a home 0.002 0.017 0.023 0.029 0.026
Rock climbing 0.014 0.003 0.146 0.015 0.036
Town hall meeting 0.020 0.008 0.014 0.023 0.035
Winning a race without a vehicle 0.028 0.012 0.110 0.095 0.101
Working on a metal crafts project 0.002 0.002 0.006 0.010 0.014

MAP 0.024 0.032 0.063 0.100 0.119

based we have the ability to apply them on each frame. As
a result we describe how well the frame is related to an event.
Irrelevant frames are simply ignored.

Flickr concepts are relevant to the event but they are
trained on images of Flickr leading to a domain mismatch.
The same holds for the 15k-Concepts trained on Image-
Net. Moreover, most of its concepts are irrelevant to the
event of interest. Both the composite concepts and 479-
Concepts are trained on video-level labels. It means they
suffer less from the domain mismatch leading to improved
zero-example event detection results. However, both of these
methods suffer from the fact that they treat all frames equally,
which adds lots of irrelevant frames to the representation.
Our concept prototypes contain concepts that are relevant
to the event, are trained on video, and consider only the
most relevant frames.

4.3 Unsupervised event summarization
We show the result of experiment 3 on MED-summaries [28]

in Figure 4. The result demonstrates the effectiveness of
our concept prototypes for unsupervised video event sum-
marization against random frame selection, 15k-Concepts,
and 479-Concepts for all summarization settings. When we
request a summary containing 30% of the video we reach
to 0.600 accuracy in IR, where random frame selection,15k-
Concepts, and 479-Concepts reach to 0.221, 0.274, and 0.384
accuracy in IR. The accuracy of the oracle upper bond is
0.923 IR. Since our concept prototypes are frame-based, we
can apply them on each frame of a video and reach to an
accurate video representation. Where the others are video-
level by nature which makes them less suited for frame-level
classification, resulting in a less reliable summary.

We visualize the result of video event summarization for
two videos of the events birthday party and Changing a ve-
hicle tire using our concept prototypes and the 479-concept
detectors, as the best baseline, in Figure 5. In both exam-
ples we see the effectiveness of using our concept prototypes
against concept detectors in video event summarization.

5. CONCLUSIONS
In this paper we propose concept prototypes a new se-

mantic video representation for few and zero example event

detection and unsupervised video summarization. Different
from existing works, which obtain a semantic representation
by training concepts over images or an entire video, we pro-
pose an algorithm that learns a set of relevant frames as the
concept prototypes from web video examples, without the
need for frame-level annotations.

We formulate the problem of learning the concept proto-
types as seeking the frames closest to the densest region in
the feature space of video frames containing both positive
and negative training videos. The prototypes represent a
class of frames that are more likely to appear in positive
videos than in negative videos. Since the concept proto-
types are a frame-level representation of concepts, we have
the ability of mapping each frame of a video in concept pro-
totype space which has several benefits. First, few-example
event detection accuracy increases when using relevant con-
cept prototypes. Second, the accuracy of zero-example event
detection increases by analyzing each frame of a video indi-
vidually in concept prototype space. Finally, unsupervised
video event summarization using concept prototypes is more
accurate than recent alternatives.

We conclude that selective use of relevant frames of a video
to the concept, by means of concept prototypes, is beneficial
for detecting and summarizing video events.
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