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Abstract

The goal of this paper is to recognize actions in video
without the need for examples. Different from traditional
zero-shot approaches we do not demand the design and
specification of attribute classifiers and class-to-attribute
mappings to allow for transfer from seen classes to unseen
classes. Our key contribution is objects2action, a semantic
word embedding that is spanned by a skip-gram model of
thousands of object categories. Action labels are assigned
to an object encoding of unseen video based on a convex
combination of action and object affinities. Our semantic
embedding has three main characteristics to accommodate
for the specifics of actions. First, we propose a mecha-
nism to exploit multiple-word descriptions of actions and
objects. Second, we incorporate the automated selection
of the most responsive objects per action. And finally, we
demonstrate how to extend our zero-shot approach to the
spatio-temporal localization of actions in video. Experi-
ments on four action datasets demonstrate the potential of
our approach.

1. Introduction
We aim for the recognition of actions such as blow dry

hair and swing baseball in video without the need for ex-
amples. The common computer vision tactic in such a chal-
lenging setting is to predict the zero-shot test classes from
disjunct train classes based on a (predefined) mutual rela-
tionship using class-to-attribute mappings [1, 8, 20, 32, 36].
Drawbacks of such approaches in the context of action
recognition [24] are that attributes like ‘torso twist’ and
‘look-down’ are difficult to define and cumbersome to anno-
tate. Moreover, current zero-shot approaches, be it for im-
age categories or actions, assume that a large, and labeled,
set of (action) train classes is available a priori to guide the
knowledge transfer, but today’s action recognition practice
is limited to at most hundred classes [16, 19, 35, 42]. Dif-
ferent from existing work, we propose zero-shot learning
for action classification that does not require tailored defi-
nitions and annotation of action attributes, and not a single
video or action annotation as prior knowledge.

Figure 1. We propose objects2action, a semantic embedding to
classify actions, such as playing football, playing volleyball, and
horse-riding, in videos without using any video data or action an-
notations as prior knowledge. Instead it relies on commonly avail-
able textual descriptions, images and annotations of objects.

We are inspired by recent progress in supervised video
recognition, where several works successfully demonstrated
the benefit of representations derived from deep convolu-
tional neural networks for recognition of actions [14,17,39]
and events [40, 49]. As these nets are typically pre-trained
on images and object annotations from ImageNet [5], and
consequently their final layer represent object category
scores, these works reveal that object scores are well-
suited for video recognition. Moreover, since these ob-
jects have a lingual correspondence derived from nouns in
WordNet, they are a natural fit for semantic word embed-
dings [6,9,26,29,41]. As prior knowledge for our zero-shot
action recognition we consider a semantic word embedding
spanned by a large number of object class labels and their
images from ImageNet, see Figure 1.

Our key contribution is objects2action, a semantic em-
bedding to classify actions in videos without using any
video data or action annotations as prior knowledge. Instead
it relies on commonly available object annotations, images
and textual descriptions. Our semantic embedding has three
main characteristics to accommodate for the specifics of ac-
tions. First, we propose a mechanism to exploit multiple-
word descriptions of actions and ImageNet objects. Sec-



ond, we incorporate the automated selection of the most re-
sponsive objects per action. And finally, we demonstrate
our zero-shot approach to action classification and spatio-
temporal localization of actions.

Before going into detail, we will first connect our ap-
proach to related work on action recognition and zero-shot
recognition.

2. Related work
2.1. Action Recognition

The action classification literature offers a mature reper-
toire of elegant and reliable methods with good accuracy.
Many methods include sampling spatio-temporal descrip-
tors [7, 47], aggregating the descriptors in a global video
representation, such as versions of VLAD [12,33] or Fisher
Vectors [34] followed by supervised classification with an
SVM. Inspired by the success of deep convolutional neural
networks in image classification [18], several recent works
have demonstrated the potential of learned video represen-
tations for action and event recognition [14, 17, 39, 40, 49].
All these deep representations are learned from thousands
of object annotations [5], and consequently, their final out-
put layer corresponds to object category responses indicat-
ing the promise of objects for action classification. We also
use a deep convolutional neural network to represent our
images and video as object category responses, but we do
not use any action annotations nor any training videos.

Action classification techniques have recently been ex-
tended to action localization [2, 13, 21, 30, 46] where in ad-
dition to the class, the location of the action in the video
is detected. To handle the huge search space that comes
with such precise localization, methods to efficiently sam-
ple action proposals [13, 30, 46] are combined with the en-
codings and labeled examples used in action classification.
In contrast, we focus on the zero-shot case where there is
no labeled video data available for classification nor for lo-
calization. We are not aware of any other work on zero-shot
action localization.

2.2. Zero-Shot Recognition

The paradigm of zero-shot recognition became popular
with the seminal paper of Lampert et al. [20]. The idea is
that images can be represented by a vector of classification
scores from a set of known classes, and a semantic link can
be created from the known class to a novel class. Existing
zero-shot learning methods can be grouped based on the dif-
ferent ways of building these semantic links.

A semantic link is commonly obtained by a human pro-
vided class-to-attribute mapping [1, 8, 20, 32], where for
each unseen class a description is given in terms of a set
of attributes. Attributes should allow to tell classes apart,
but should not be class specific, which makes finding good

attributes and designing class-to-attribute mappings a non-
trivial task. To overcome the need for human selection, at
least partially, Rohrbach et al. evaluate external sources for
defining the class-to-attribute mappings [36]. Typically, at-
tributes are domain specific, e.g. class and scene proper-
ties [20] or general visual concepts [23] learned from im-
ages, or action classes [37] and action attributes [24] learned
from videos. In our paper we exploit a diverse vocabulary
of object classes for grounding unseen classes. Such a setup
has successfully been used for action classification when
action labels are available [14]. In contrast, we have a zero-
shot setting and do not use any action nor video annotations.

Zero-shot video event recognition as evaluated in
TRECVID [31] offers meta-data in the form of a an event
kit containing the event name, a definition, and a precise
description in terms of salient concepts. Such meta-data
can cleverly be used for a class-to-attribute mapping based
on multi-modal concepts [11, 48], seed a sequence of mul-
timodal pseudo relevance feedback [15], or select relevant
tags from Flickr [3]. In contrast to these works, we do not
assume any availability of additional meta-data and only
rely on the action name.

To generalize zero-shot classification beyond attribute-
to-class mappings, Mensink et al. [25] explored various
metrics to measure co-occurrence of visual concepts for es-
tablishing a semantic link between labels, and Froome et
al. [9] and Norouzi et al. [29] exploit semantic word em-
beddings for this link. We opt for the latter direction, and
also use a semantic word embedding [22, 26, 27] since this
is the most flexible solution, and allows for exploiting ob-
ject and action descriptions containing multiple words, such
as the WordNet synonyms and the subject, verb and object
triplets to describe actions [10, 43] used in this paper.

3. Objects2action
In zero-shot classification the train classes Y are dif-

ferent from the set of zero-shot test classes Z , such that
Y ∩ Z = ∅. For training samples X , a labeled dataset
D ≡ {X ,Y} is available, and the objective is to classify
a test sample as belonging to one of the test classes Z . Usu-
ally, test samples v are represented in terms of classification
scores for all train classes pvy ∀y ∈ Y , and an affinity score
gyz is defined to relate these train classes to the test classes.
Then the zero-shot prediction could be understood as a con-
vex combination of known classifiers [1, 25, 29]:

C(v) = argmax
z

∑
y

pvy gyz. (1)

Often there is a clear relation between training classes
Y and test classes Z , for example based on class-to-
attribute relations [1, 20] or all being nouns from the Im-
ageNet/Wordnet hierarchy [9, 29]. It is unclear, however,



Figure 2. Dataflow in objects2action. Intermediate processes, data
and corresponding symbols are specified in Section 3. Sparse
tranlsation is only shown for action to object affinity. Note that
we do not require any action class labeled visual examples nor any
video examples as prior knowledge.

how to proceed when train classes and test classes are se-
mantically disjoint.

Our setup, see Figure 2, differs in two aspects to the stan-
dard zero-shot classification pipeline: i) our zero-shot test
examples are videos V to be classified in actions Z , while
we have a train set D with images X labeled with objects
Y derived from ImageNet [5]. Therefore, we aim to trans-
fer from the domain of images X to the domain of videos
V , and ii) we aim to translate objects semantics Y to the
semantics of actions Z .

Object encoding We encode a test video v by the clas-
sification scores to the m = |Y | objects classes from the
train set:

pv = [p(y1|v), . . . , p(ym|v)]T (2)

where the probability of an object class is given by a deep
convolutional neural network trained from ImageNet [18],
as recently became popular in the video recognition liter-
ature [14, 17, 39, 40, 49]. For a video v the probability
p(y|v) is computed by averaging over the frame probabil-
ities, where every 10th frame is sampled. We exploit the
semantics of in total 15,293 ImageNet object categories for
which more than 100 examples are available.

We define the affinity between an object class y and ac-
tion class z as:

gyz = s(y)T s(z), (3)

where s(·) is a semantic embedding of any class Z ∪ Y ,
and we use gz = [s(y1) . . . s(ym)]T s(z) to represent the
translation of action z in terms of objects Y . The semantic
embedding function s is further detailed below.

3.1. Semantic embedding via Gaussian mixtures

The objective for a semantic embedding is to find a d-
dimensional space, in which the distance between an object
s(y) and an action s(z) is small, if and only if their classes
y and z are found in similar (textual) context. For this we
employ the skip-gram model of word2vec [26,27] as seman-
tic embedding function, which results in a look-up table for
each word, corresponding to a d-dimensional vector.

Semantic word embeddings have been used for zero-shot
object classification [29], but in our setting the key differ-
ences are i) that train and test classes come from different
domains: objects in the train set and actions in the test set;
and ii) both the objects and actions are described with a
small description instead of a single word. In this section we
describe two embedding techniques to exploit these multi-
word descriptions to bridge the semantic gap between ob-
jects and actions.

Average Word Vectors (AWV) The first method to
exploit multiple words is take the average vector of the em-
bedded words [28]. The embedding s(c) of a multi-words
description c is given by:

sA(c) =
1

|w|
∑
w∈c

s(w). (4)

This model combines words to form a single average word,
as represented with a vector inside the word embedding.
While effective, this cannot model any semantic relations
that may exist between words. For example, the relations
for the word stroke, in the sequence stroke, swimming, wa-
ter is completely different than the word relations in the se-
quence stroke, brain, ambulance.

Fisher Word Vectors (FWV) To describe the pre-
cise meaning of distinct words we propose to aggregate the
word embeddings using Fisher Vectors [38]. While these
were originally designed for aggregating local image de-
scriptors [38], they can be used for aggregating words as
long as the discrete words are transformed into a contin-
uous space [4]. In contrast to [4], where LSI is used to
embed words into a continuous space, we employ the word
embedding vectors of the skip-gram model. These vectors
for each word are then analogous to local image descriptors
and a class description is analogous to an image.

The advantage of the FWV model is that it uses an un-
derlying generative model over the words. This generative
model is modeling semantic topics within the word embed-
ding. Where AWV models a single word, the FWV models
a distribution over words. The stroke example could for ex-
ample be assigned to two clear, distinct topics infarct and
swimming. This word sense disambiguation leads to a more
precise semantic grounding at the topic-level, as opposed to
single word-level.

In the Fisher Vector, a document (i.e. a set of words)
is described as the gradient of the log-likelihood of these



observations on an underlying probabilistic model. Follow-
ing [38] we use a diagonal Gaussian Mixture Model with
k components as probabilistic model, which we learn on
approximately 45K word embedding vectors from the 15K
object classes in ImageNet.

The Fisher Vectors with respect to the mean µk and vari-
ance σk of mixture component k are given by:

Gcµk
=

1
√
πk

∑
w∈c

γw(k)

(
s(w)− µk

σk

)
, (5)

Gcσk
=

1√
2πk

∑
w∈c

γw(k)

(
(s(w)− µk)2

σ2
k

− 1

)
, (6)

where πk is the mixing weight, and γw(k) denotes the re-
sponsibility of component k and we use the closed-form ap-
proximation of the Fisher information matrix of [38]. The
final Fisher Word Vector is the concatenation of the Fisher
Vectors (Eq. (5) and Eq. (6)) for all components:

sF(c) = [Gcµ1
,Gcσ1

, . . . ,Gcµk
,Gcσk

]T . (7)

3.2. Sparse translations

The action representation gz represents the translation of
the action to all objects in Y . However, not all train objects
are likely to contribute to a clear description of a specific
action class. For example, consider the action class kayak-
ing, it makes sense to translate this action to object classes
such as kayak, water, and sea, with some related additional
objects like surf-board, raft, and peddle. Likewise a simi-
larity value with, e.g., dog or cat is unlikely to be beneficial
for a clear detection, since it introduces clutter. We consider
two sparsity metrics that operate on the action classes or the
test video.

Action sparsity We propose to sparsify the represen-
tation gz by selecting the Tz most responsive object classes
to a given action class z. Formally, we redefine the action
to object affinity as:

ĝz = [gzy1δ(y1, Tz), . . . , gzymδ(ym, Tz)]
T (8)

where δ(yi, Tz) is an indicator function, returning 1 if class
yi is among the top Tz classes. In the same spirit, the ob-
jects could also have been selected based on their distance,
considering only objects within an εz distance from s(z).
We opt for the selection of the top Tz documents, since it is
easier to define an a priori estimate of the value. Selecting
Tz objects for an action class z means that we focus only on
the object classes that are closer to the action classes in the
semantic space.

Video sparsity Similarly, the video representation pv
is, by design, a dense vector, where each entry contains the
(small) probability p(y|v), of the presence of train class y
in the video v. We follow [29] and use only the top Tv most

prominent objects present in the video:

p̂v = [p(y1|v)δ(y1, Tv), . . . , p(ym|v)δ(ym, Tv)]T (9)

where δ(yi, Tv) is an indicator function, returning 1 if class
yi is among the top Tv classes. Increasing the sparsity, by
considering only the top Tv class predictions will reduce the
effect of adding random noise by summing over a lot of un-
related classes with a low probability mass and is therefore
likely to be beneficial for zero-shot classification.

The optimal values for both Tz and Tv are likely to de-
pend on the datasets, the semantic representation and the
specific action description. Therefore they are considered
as hyper-parameters of the model. Typically, we would ex-
pect that T � m, e.g., the 50 most responsive object classes
will suffice for representing the video and finding the best
action to object description.

3.3. Zero-shot action localization

Objects2action is easily extendable to zero-shot localiza-
tion of actions by exploiting recent advances in sampling
spatio-temporal tube-proposals from videos [13, 30, 46].
Such proposals have shown to give a high localization re-
call with a modest set of proposals.

From a test video, a set U of spatio-temporal tubes are
sampled [13]. For each test video we simply select the max-
imum scoring tube proposal:

C(v) = argmax
z∈Z,u∈Uv

∑
y

puy gyz, (10)

where u denotes a spatio-temporal tube proposal, and puy
is the probability of the presence of object y in region u.

For the spatio-temporal localization, a tube proposal
contains a series of frames, each with a bounding-box in-
dicating the spatial localization of the action. We feed just
the pixels inside the bounding-box to the convolutional neu-
ral network to obtain the visual representation embedded in
object labels. We will demonstrate the localization ability
in the experiments.

4. Experiments
In this section, we employ the proposed object2action

model on four recent action classification datasets. We first
describe these datasets and the text corpus used. Second,
we analyze the impact of applying the Fisher Word Vector
over the baseline of the Average Word Vector for computing
the affinity between objects and actions, and we evaluate the
action and video sparsity parameters. Third, we report zero-
shot classification results on the four datasets, and we com-
pare against the traditional zero-shot setting where actions
are used during training. Finally, we report performance of
zero-shot spatio-temporal action localization.
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Figure 3. Impact of video Tv and action Tz sparsity parameters, individually (left) and when combined (right) on UCF101 dataset.

4.1. Prior knowledge and Datasets

Our method is based on freely available resources which
we use as prior knowledge for zero-shot action recognition.
For the four action classification datasets datasets used we
only use the test set.

Prior knowledge We use two types of prior knowl-
edge. First, we use deep convolutional neural network
trained from ImageNet images with objects [18] as visual
representation. Second, for the semantic embedding we
train the skip-gram model of word2vec on the metadata (ti-
tle, descriptions, and tags) of the YFCC100M dataset [44],
this dataset contains about 100M Flickr images. Prelimi-
nary experiments showed that using visual metadata results
in better performance than training on Wikipedia or Google-
News data. We attribute this to the more visual descriptions
used in the YFC100M dataset, yielding a semantic embed-
ding representing visual language and relations.

UCF101 [42] This dataset contains 13,320 videos of
101 action classes. It has realistic action videos collected
from YouTube and has large variations in camera motion,
object appearance/scale, viewpoint, cluttered background,
illumination conditions, etc. Evaluation is measured using
average class accuracy, over the three provided test-splits
with around 3,500 videos each.

THUMOS14 [16] This dataset has the same 101 ac-
tion classes as in UCF101, but the videos are have a longer
duration and are temporally unconstrained. We evaluate on
the testset containing 1,574 videos, using mean average pre-
cision (mAP) as evaluation measure.

HMDB51 [19] This dataset contains 51 action classes
and 6,766 video clips extracted from various sources, rang-
ing from YouTube to movies, and hence this dataset con-
tains realistic actions. Evaluation is measured using average
class accuracy, over the three provided test-splits with each
30 videos per class (1,530 videos per split).

UCF Sports [35] This dataset contains 150 videos of

Embedding Sparsity Best Accuracy at
accuracy Tz=10, Tv=100

Video 18.0% 17.5%
AWV Action 22.7% 21.9%

Combine 22.7% 21.6%
Video 29.1% 29.0%

FWV Action 30.8% 30.3%
Combine 30.8% 30.3%

Table 1. Evaluating AWV and FWV for object to class affinity, and
comparing action and video sparsity on UCF101 dataset.

10 action classes. The videos are from sports broadcasts
capturing sport actions in dynamic and cluttered environ-
ments. Bounding box annotations are provided and this
dataset is often used for spatio-temporal action localization.
For evaluation we use the test split provided by [21] and
performance is measured by average class accuracy.

4.2. Properties of Objects2action

Semantic embedding We compare the AWV with the
FWV as semantic embedding. For the FWV, we did a run of
preliminary experiments to find suitable parameters for the
number of components (varying k = {1, 2, 4, 8, 16, 32}),
the partial derivatives used (weight, mean, and/or variance)
and whether to use PCA or not. We found them all to per-
form rather similar in terms of classification accuracy. Con-
sidering a label has only a few words (1 to 4), we therefore
fix k = 2, apply PCA to reduce dimensionality by a factor
of 2, and to use only the partial derivatives w.r.t. the mean
(conforming the results in [4]). Hence, the total dimen-
sionality of FWV is d, equivalent to the dimensionality of
AWV, which allows for a fair comparison. The two embed-
dings are compared in Table 1 and Figure 3 (left), and FWV
clearly outperforms AWV in all the cases.

Sparsity parameters In Figure 3, we evaluate the ac-
tion sparsity and video sparsity parameters. The left plot
shows average accuracy versus Tz and Tv . It is evident that



Embedding Sparsity UCF101 HMDB51 THUMOS14 UCF Sports

AWV
None 16.7% 8.0% 4.4% 13.9%
Video 17.5% 7.7% 10.7% 13.9%
Action 21.9% 9.9% 19.9% 25.6%

FWV
None 28.7% 14.2% 25.9% 23.1%
Video 29.0% 14.5% 27.8% 23.1%
Action 30.3% 15.6% 33.4% 26.4%

Supervised 63.9% 35.1% 56.3% 60.7%
Table 2. Evaluating semantic embeddings, action and video spartsity: Average accuracies (mAP for THUMOS14) for the four datasets.
Action sparsity and FWV both boost the performance consistently. Supervised upper-bound using object scores as representation.

action sparsity, i.e., selecting most responsive object classes
for a given action class leads to a better performance than
video sparsity. The video sparsity (green lines) is more sta-
ble throughout and achieves best results in the range of 10
to 100 objects. Action sparsity is a bit sinuous, neverthe-
less it always performs better, independent of the type of
embedding. Action sparsity is at its best in the range of
selecting the 5 to 30 most related object classes. For the re-
maining experiments, we fix these parameters as Tz = 10
and Tv = 100.

We also consider the case when we apply sparsity on
both video and actions (see the right plot). Applying spar-
sity on both sides does not improve performance, it is equiv-
alent to the best action sparsity setting, showing that select-
ing the most prominent objects per action suffice for zero-
shot action classification. Table 1 summarise the accuracies
for the best and fixed choices of Tz and Tv .

4.3. Zero-shot action classification

In this section we employ the obtained parameters of Ob-
ject2action, from the previous section, for zero-shot action
classification on the test splits of all four datasets. We eval-
uate the benefit of using the FWV over AWV, and the ef-
fect of using sparsity (video sparsity, action sparsity or no
sparsity at all). The results are provided in Table 2. We
observe that the FWV always outperforms AWV, and that
it is always beneficial to apply sparsity, and action sparsity
with FWV performs the best. We also provide the super-
vised upper-bounds using the same video representation of
object classification scores in Table 2. Here and for all the
experiments, we power normalize (α = 0.5) the video rep-
resentations before applying `2 normalization.

Comparison to few-shot supervised learning In this
experiment we compare the zero-shot classifier against few-
shot supervised learning, on the THUMOS14 dataset. For
this we consider two types of video representation. The first
representations, uses the state-of-the-art motion representa-
tion of [47], by encoding robust MBH descriptors along the
improved trajectories [47] using Fisher Vectors. We fol-
low the standard parameter cycle, by applying PCA, using
a GMM with K = 256 Gaussians, employing power and
`2 normalization. The second representation uses the object
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Figure 4. Our approach compared with the supervised classifica-
tion with few examples per class: State-of-the-art object and mo-
tion representations respectively require 4 and 10 examples per
class to catch up with our approach, which uses no example.

scores pv of a video, here also we apply power and `2 nor-
malization. For both representations, we train one-vs-rest
linear SVM classifiers and we average performance over 20
runs for every given number of train examples.

The results in mAP are shown in Figure 4. Interestingly,
to perform better than our zero-shot classification, fully su-
pervised classification setup requires 4 and 10 samples per
class for object and motion representations respectively.

Object transfer versus action transfer We now ex-
periment with the more conventional setup for zero-shot
learning, where we have training data for some action
classes, disjoint from the set of test action classes. We keep
half of the classes of a given dataset as train labels and the
other half as our zero-shot classes. The action classifiers
are learned from odd (or even) numbered classes and videos
from the even (or odd) numbered classes are tested.

We evaluate two types of approaches for action transfer,
i.e., when training classes are also actions. The first method
uses the provided action attributes for zero-shot classifica-
tion with direct attribute prediction [20]. Since attributes are
available only for UCF101, we experiment on this dataset.



Method Train Test UCF101 HMDB51

Action attributes
Even Odd 16.2% —
Odd Even 14.6% —

Action labels
Even Odd 16.1% 12.4%
Odd Even 14.4% 13.4%

Objects2action ImageNet
Odd 37.3% 15.0%
Even 38.9% 24.5%

Table 3. Object transfer versus action transfer in a conventional
zero-shot set-up. Direct attribute prediction [20] is used with ac-
tion attributes, FWV is used to embed action labels, and in our
objects2action.

The train videos of the training classes are used to learn
linear SVMs for the provided 115 attributes. The second
method uses action labels embedded by FWV to compute
affinity between train and test action labels. We use the
same GMM with k = 2 components learned on ImageNet
object labels. Here linear SVMs are learned for the train-
ing action classes. The results are reported for UCF101 and
HMDB51 datasets. For both the above approaches for ac-
tion transfer, we use MBH descriptors encoded by Fisher
vectors for video representation. The results are reported in
Table 3.

For comparison with our approach, the same setup of
testing on odd or even numbered classes is repeated with
the object labels. The training set is ImageNet objects, so
no video example is used for training. Table 3 compares ob-
ject transfer and action transfer for zero-shot classification.
Object transfer leads to much better learning compared to
both the methods for action transfer. The main reason for
the inferior performance using actions is that there are not
enough action labels or action attributes to describe the test
classes, whereas from 15k objects there is a good chance to
find a few related object classes.

Zero-shot event retrieval We further demonstrate our
method on the related problem of zero-shot event retrieval.
We evaluate on the TRECVID13 MED [31] testset for EK0
task. There are 20 event classes and about 27,000 videos
in the testset. Instead of using the manually specified event
kit containing the event name, a definition, and a precise
description in terms of salient attributes, we only rely on
the class label. In Table 4, we report mAP using event la-
bels embedded by AWV and FWV. We also compare with
the state-of-the-art approaches of Chen et al. [3] and Wu et
al. [48] reporting their settings that are most similar to ours.
They learn concept classifiers from images (from Flickr,
Google) or YouTube video thumbnails, be it that they also
use the complete event kit description. Using only the event
labels, both of our semantic embeddings outperform these
methods.

Free-text action search As a final illustration we
show in Figure 6 qualitative results from free-text query-
ing of action videos from the THUMOS14 testset. We used

Method mAP
Wu et al. [48] (Google images) 1.21%
Chen et al. [3] (Flickr images) 2.40%
Wu et al. [48] (YouTube thumbnails) 3.48%

Objects2action
AWV 3.49%
FWV 4.21%

Table 4. Zero-shot event retrieval on TRECVID13 MED testset:
Comparison with the state-of-the-art methods having similar zero-
shot setup as ours. Inspite of using only event labels and im-
ages, we outperform methods that use event description and video
thumbnails.
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Figure 5. Action localization without video example on UCF
Sports: AUCs for different overlap thresholds are shown for Tz =
10 and also for the fully supervised setting with motion and object
representations. The performance is promising considering no ex-
ample videos are used.

the whole dataset for querying, and searched for actions
that are not contained in the 101 classes of THUMOS14.
Results show that free-text querying offers a tool to ex-
plore a large collection of videos. Results are best when
the query is close to one or a few existing action classes,
for example “Dancing” retrieves results from “salsa-spin”
and other dancing clips. Our method fails for the query “hit
wicket”, although it does find cricket matches. Zero shot ac-
tion recognition through an object embedding unlocks free
text querying without using any kind of expensive video an-
notations.

4.4. Zero-shot action localization

In our final experiment, we aim to localize actions in
videos, i.e., detect when and where an action of interest oc-
curs. We evaluate on the UCF Sports dataset, following the
latest convention to localize an action spatio-temporally as
a sequence of bounding boxes [13,21,45]. For sampling the
action proposal, we use the tubelets from [13] and compute
object responses for each tubelet of a given video. We com-
pare with the fully supervised localization using the object
and motion representations described in Section 4.3. The
top five detections are considered for each video after non-
maximum suppression.



Fight in ring Dancing Martial arts Smelling food Hit wicket

Figure 6. Illustration of never seen actions on THUMOS14 testset: For a given textual action query the top five retrieved videos are shown.
The 101 classes of THUMOS14 do not contain these five action label queries. The first two queries are somewhat close to classes ‘Sumo
wrestling’ and ‘Salsa spin’. All retrieved videos for the query: ‘Fight in ring’ include sumo wrestling. The videos retrieved for the second
query: ‘Dancing’ also includes two instances of dancing other than salsa. All results for the these two queries are technically correct. The
third query ‘Martial arts’ finds mostly gymnasts, and a karate match. The fourth query is: ‘Smelling food’, where we still obtain cakes,
food items and dining table in the background. For the fifth query: ‘hit wicket’ (in cricket) we do not succeed but retrieve some cricket
videos. This illustration shows the potential for free keyword querying of action classes without using any examples.

The three are compared in Figure 5, which plots area
under the ROC (AUC) for varying overlap thresholds. We
also show the results of another supervised method of Lan et
al. [21]. It is interesting to see that for higher thresholds our
approach performs better. Considering that we do not use
any training example it is an encouraging result. There are
other state-of-the-art methods [13, 14, 45] not shown in the
figure to avoid clutter. These methods achieve performance
comparable to or lesser than our supervised case.

For certain action classes many objects and scene from
the context might not be present in the groundtruth tubelets.
Still our approach finds enough object classes for recogniz-
ing the zero-shot classes in the tubelets, as we have large
number of train classes. In contrast, finding atomic parts
of actions such as ‘look-up’, ‘sit-down’, ‘lift-leg’ etc are
difficult to collect or annotate. This is one of the most criti-
cal advantages we have with objects, that it is easier to find
many object or scene categories.

5. Conclusion
We presented a method for zero shot action recognition

without using any video examples. Expensive video annota-

tions are completely avoided by using abundantly available
object images and labels and a freely available text corpus
to relate actions into an object embedding. In addition, we
showed that modeling a distribution over embedded words
with the Fisher Vector is beneficial to obtain a more pre-
cise sense of the unseen action class topic, as compared to
a word embedding based on simple averaging. We explored
sparsity both in the object embedding, as well as in the un-
seen action class, showing that sparsity is beneficial over
mere feature-dimensionality.

We validate our approach on four action datasets and
achieve promising results for action classification and lo-
calization. We also demonstrate our approach for action and
event retrieval on THUMOS14 and TRECVID13 MED re-
spectively. The most surprising aspect of our objects2action
is that it can potentially find any action in video, without
ever having seen the action before.

Acknowledgments This research is supported by the STW
STORY project and the Dutch national program COMMIT.



References
[1] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Label-

embedding for attribute-based classification. In CVPR, 2013. 1, 2
[2] L. Cao, Z. Liu, and T. S. Huang. Cross-dataset action detection. In

CVPR, 2010. 2
[3] J. Chen, Y. Cui, G. Ye, D. Liu, and S.-F. Chang. Event-driven seman-

tic concept discovery by exploiting weakly tagged internet images. In
ICMR, 2014. 2, 7

[4] S. Clinchant and F. Perronnin. Textual similarity with a bag-of-
embedded-words model. In ICTIR, 2013. 3, 5

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Ima-
geNet: A Large-Scale Hierarchical Image Database. In CVPR, 2009.
1, 2, 3

[6] M. Elhoseiny, B. Saleh, and A. Elgammal. Write a classifier: Zero-
shot learning using purely textual descriptions. In ICCV, 2013. 1

[7] I. Everts, J. C. van Gemert, and T. Gevers. Evaluation of color
spatio-temporal interest points for human action recognition. TIP,
23(4):1569–1580, 2014. 2

[8] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects
by their attributes. In CVPR, 2009. 1, 2

[9] A. Frome, G. Corrado, J. Shlens, S. Bengio, J. Dean, M. Ranzato,
and T. Mikolov. Devise: A deep visual-semantic embedding model.
In NIPS, 2013. 1, 2

[10] S. Guadarrama, N. Krishnamoorthy, G. Malkarnenkar, S. Venu-
gopalan, R. Mooney, T. Darrell, and K. Saenko. Youtube2text: Rec-
ognizing and describing arbitrary activities using semantic hierar-
chies and zero-shot recognition. In ICCV, 2013. 2

[11] A. Habibian, T. Mensink, and C. Snoek. Composite concept discov-
ery for zero-shot video event detection. In ICMR, 2014. 2

[12] M. Jain, H. Jégou, and P. Bouthemy. Better exploiting motion for
better action recognition. In CVPR, 2013. 2

[13] M. Jain, J. van Gemert, H. Jégou, P. Bouthemy, and C. Snoek. Action
localization with tubelets from motion. In CVPR, 2014. 2, 4, 7, 8

[14] M. Jain, J. van Gemert, and C. Snoek. What do 15,000 object cat-
egories tell us about classifying and localizing actions? In CVPR,
2015. 1, 2, 3, 8

[15] L. Jiang, T. Mitamura, S. Yu, and A. Hauptmann. Zero-example
event search using multimodal pseudo relevance feedback. In ICMR,
2014. 2

[16] Y.-G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev, M. Shah,
and R. Sukthankar. THUMOS challenge: Action recognition with a
large number of classes. http://crcv.ucf.edu/THUMOS14/,
2014. 1, 5

[17] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei. Large-scale video classification with convolutional neural
networks. In CVPR, 2014. 1, 2, 3

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In NIPS, 2012. 2, 3,
5

[19] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB:
A large video database for human motion recognition. In ICCV,
2011. 1, 5

[20] C. Lampert, H. Nickisch, and S. Harmeling. Learning to detect un-
seen object classes by between-class attribute transfer. In CVPR,
2009. 1, 2, 6, 7

[21] T. Lan, Y. Wang, and G. Mori. Discriminative figure-centric models
for joint action localization and recognition. In ICCV, 2011. 2, 5, 7,
8

[22] Q. Le and T. Mikolov. Distributed representations of sentences and
documents. In ICML, 2014. 2

[23] L.-J. Li, H. Su, Y. Lim, and L. Fei-Fei. Object bank: An object-
level image representation for high-level visual recognition. IJCV,
107(1):20–39, 2014. 2

[24] J. Liu, B. Kuipers, and S. Savarese. Recognizing human actions by
attributes. In CVPR, 2011. 1, 2

[25] T. Mensink, E. Gavves, and C. Snoek. Costa: Co-occurrence statis-
tics for zero-shot classification. In CVPR, 2014. 2

[26] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation
of word representations in vector space. In ICLR, 2013. 1, 2, 3

[27] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Dis-
tributed representations of words and phrases and their composition-
ality. In NIPS, 2013. 2, 3

[28] D. Milajevs, D. Kartsaklis, M. Sadrzadeh, and M. Purver. Evaluating
neural word representations in tensor-based compositional settings.
In EMNLP, 2014. 3

[29] M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens, A. Frome,
G. Corrado, and J. Dean. Zero-shot learning by convex combination
of semantic embeddings. In ICLR, 2014. 1, 2, 3, 4

[30] D. Oneata, J. Revaud, J. Verbeek, and C. Schmid. Spatio-temporal
object detection proposals. In ECCV, 2014. 2, 4

[31] P. Over, G. Awad, J. Fiscus, and G. Sanders. Trecvid 2013–an intro-
duction to the goals, tasks, data, evaluation mechanisms, and metrics.
In TRECVID Workshop, 2013. 2, 7

[32] D. Parikh and K. Grauman. Relative attributes. In ICCV, 2011. 1, 2
[33] X. Peng, L. Wang, Y. Qiao, and Q. Peng. Boosting vlad with super-

vised dictionary learning and high-order statistics. In ECCV, 2014.
2

[34] X. Peng, C. Zou, Y. Qiao, and Q. Peng. Action recognition with
stacked fisher vectors. In ECCV, 2014. 2

[35] M. D. Rodriguez, J. Ahmed, and M. Shah. Action MACH: a spatio-
temporal maximum average correlation height filter for action recog-
nition. In CVPR, 2008. 1, 5

[36] M. Rohrbach, M. Stark, and B. Schiele. Evaluating knowledge trans-
fer and zero-shot learning in a large-scale setting. In CVPR, 2011. 1,
2

[37] S. Sadanand and J. J. Corso. Action bank: A high-level representa-
tion of activity in video. In CVPR, 2012. 2

[38] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classi-
fication with the fisher vector: Theory and practice. IJCV, 2013. 3,
4

[39] K. Simonyan and A. Zisserman. Two-stream convolutional networks
for action recognition in videos. In NIPS, 2014. 1, 2, 3

[40] C. Snoek et al. MediaMill at TRECVID 2013: Searching concepts,
objects, instances and events in video. In TRECVID, 2013. 1, 2, 3

[41] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zero-shot learning
through cross-modal transfer. In NIPS, 2013. 1

[42] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A dataset of 101
human actions classes from videos in the wild. CoRR, 2012. 1, 5

[43] C. Sun and R. Nevatia. Semantic aware video transcription using
random forest classifiers. In ECCV, 2014. 2

[44] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni,
D. Poland, D. Borth, and L.-J. Li. The new data and new challenges
in multimedia research. arXiv preprint arXiv:1503.01817, 2015. 5

[45] Y. Tian, R. Sukthankar, and M. Shah. Spatiotemporal deformable
part models for action detection. In CVPR, 2013. 7, 8

[46] J. van Gemert, M. Jain, E. Gati, and C. Snoek. APT: Action local-
ization proposals from dense trajectories. In BMVC, 2015. 2, 4

[47] H. Wang and C. Schmid. Action recognition with improved trajecto-
ries. In ICCV, 2013. 2, 6

[48] S. Wu, S. Bondugula, F. Luisier, X. Zhuang, and P. Natarajan. Zero-
shot event detection using multi-modal fusion of weakly supervised
concepts. In CVPR, 2014. 2, 7

[49] Z. Xu, Y. Yang, and A. G. Hauptmann. A discriminative CNN video
representation for event detection. In CVPR, 2015. 1, 2, 3

http://crcv.ucf.edu/THUMOS14/

