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Abstract

Few-shot learning is a nascent research topic, motivated by
the fact that traditional deep learning methods require tremen-
dous amounts of data. The scarcity of annotated data becomes
even more challenging in semantic segmentation since pixel-
level annotation in segmentation task is more labor-intensive
to acquire. To tackle this issue, we propose an Attention-
based Multi-Context Guiding (A-MCG) network, which con-
sists of three branches: the support branch, the query branch,
the feature fusion branch. A key differentiator of A-MCG is
the integration of multi-scale context features between sup-
port and query branches, enforcing a better guidance from
the support set. In addition, we also adopt a spatial atten-
tion along the fusion branch to highlight context information
from several scales, enhancing self-supervision in one-shot
learning. To address the fusion problem in multi-shot learn-
ing, Conv-LSTM is adopted to collaboratively integrate the
sequential support features to elevate the final accuracy. Our
architecture obtains state-of-the-art on unseen classes in a
variant of PASCAL VOC12 dataset and performs favorably
against previous work with large gains of 1.1%, 1.4% mea-
sured in mIoU in the 1-shot and 5-shot setting.

Introduction
The state-of-the-art in image classification, detection and
segmentation have been greatly advanced by convolution
neural networks (CNN). Although CNNs exhibit superior
performances in a variety of tasks, it has the key problem
of being data hungry. Typically gigantic data with annota-
tions are required for achieving high accuracy. This issue
becomes more severe for pixel-level annotations. In recent
years, there emerged a new research thrust which learns
new concepts from limited data, known as few-shot learn-
ing (Vinyals et al. 2016; Snell, Swersky, and Zemel 2017;
Ravi and Larochelle 2017). Though widely explored in tasks
like image classification, few-shot learning is rarely consid-
ered for dense pixel prediction problems.

Most existing methods in few-shot semantic segmentation
are based on the framework shown in the top panel of Fig.
1. Conceptually, the framework is comprised of a support
branch and a query branch. The support branch provides dis-
criminative support feature to assist the target segmentation,
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Figure 1: Our motivation. The support image mask is over-
laid with ground truth in red, the query image is overlaid
with ground truth in blue. The above is previous method, the
below is our method. Our A-MCG network can help the sup-
port branch fuse multi-context information to hand on hand
guide the query branch.

the query branch is the feature extractor for target segmenta-
tion. This paradigm has the following difficulties: (1). Inef-
ficient support feature utilization. The feature of the support
branch is precious, as it determines the final category the net-
work will segment. However, most of the previous methods
only consider the single output from the end of the network,
which do not take full advantage of the multi-context fea-
ture. (2). Lack of attention. As the amount of support and
query data is often very small, optimization based on a large
amount of data is impossible, some self-supervised methods
such as attention should be introduced to make the network
concentrate on our target class. (3). Inconvenience in multi-
shot learning. The traditional fusion method for multi-shot
semantic segmentation is the logical or operation, this inflex-
ible approach lacks in exploring the inner common feature
between various support images.



To attack the above problems in few-shot semantic seg-
mentation, we propose an Attention-based Multi-Context
Guiding network (A-MCG) shown in the bottom of Fig. 1.
Our A-MCG tries to fuse small-to-large scale context infor-
mation to globally guide the query branch to make the right
segmentation decision. A multi-context feature will largely
facilitate the query branch segmentation based on multiple
scales of support feature. In addition, we utilize the Resid-
ual Attention Module(RAM) (Wang et al. 2017) to carry
out a self-supervised attention for further improvement of
the segmentation. To deal with multi-shot learning, Conv-
LSTM (Xingjian et al. 2015) is incorporated for better fus-
ing multi-shot support feature.

Our A-MCG network makes the following contributions:
(1). We first propose a Multi-Context Guiding structure to
fuse the small-to-large scale context features between sup-
port branch and query branch to globally guide the query
branch segmentation. (2). We introduce a Residual Attention
Module (Wang et al. 2017) in our MCG network to realize
the attention mechanism in few-shot learning of segmenta-
tion. (3). We embed the Conv-LSTM (Xingjian et al. 2015)
module into the end of our network to better merge the fea-
ture map from support set in multi-shot semantic segmen-
tation. (4). Compared with previous methods, our A-MCG
reaches state-of-the-art 61.2%, 62.2% measured in mIoU in
the 1-shot and 5-shot setting.

Related Work
Semantic Segmentation. During the early period, the
CNN is only employed in the classification tasks, most of
them (Krizhevsky, Sutskever, and Hinton 2012; Szegedy et
al. 2015) are composed of convolution layers and fully con-
nected layers. Fully Convolutional Network(FCN) (Long,
Shelhamer, and Darrell 2015) first applies CNN for the task
of image semantic segmentation. FCN’s key contribution is
building a “fully convolutional” network that takes an input
of arbitrary size and produces correspondingly-sized output
with efficient inference and learning.

In Deeplab (Chen et al. 2018), Dilated Convolutions are
introduced as an alternative to CNN pooling layers in deep
part to capture larger context without reducing the image
resolution. A module named Atrous Spatial Pyramid Pool-
ing (ASPP) is also included in Deeplab where parallel Di-
lated Convolution layers with different rates capture multi-
scale information. Our method is also illuminated by the
multi-context fusion pattern of ASPP and merges the multi-
context information by borrowing the multi-scale context
from the support branch and the query branch.

Attention Mechanism. In this paper, we mainly talk
about two types of attention mechanism: (1). Spatial At-
tention such as Residual Attention Module(RAM) (Wang
et al. 2017). Inside each Attention Module, an Hourglass-
like (Newell, Yang, and Deng ) bottom-up and top-down
feedforward structure is used for generating attention map.
(2). Channel Attention like SENet (Hu, Shen, and Sun 2018).
“Squeeze-and-Excitation”(SE) block is designed that adap-
tively recalibrates channel-wise feature responses by explic-
itly modeling interdependencies between channels. We em-

Table 1: Problem Formulation Notations.
notation meaning

IiS i-th image in support set
Y iS(l) i-th image-binary mask for class l

S = {(IiS , Y iS(l))}ki=1 support set
Iq image in query set

Ltrain train label set
Ltest test label set

ploy these two types of attention mechanism into our MCG
architecture.

Few-Shot Learning in Semantic Segmentation.
The first work in few-shot semantic segmentation is
OSLSM (Shaban et al. 2017). They proposed the basic
paradigm in few-shot segmentation. The support branch and
the query branch are constructed by VGG (Simonyan and
Zisserman 2014) to supervise training. However, the struc-
ture is not fully convolutional, which leads to inefficient
utilization of spatial information. Later co-FCN (Rakelly et
al. 2018) turns both of the support and query branches into
FCN architecture, but the exploration of multi-scale context
is not as thorough as our method.

On the other side, OSVOS (Caelles et al. 2017) tries to
solve the task of semi-supervised video object segmenta-
tion. OSVOS is also based on a fully-convolutional network
architecture and transfers generic semantic information to
the task of foreground segmentation. OSVOS shows the ef-
fectiveness of fine-tuning for video object segmentation, but
fine-tuning for every test video is too time-consuming.

Convolutional Long Short-Term Memory. Long Short-
Term Memory(LSTM) (Hochreiter and Schmidhuber ) is
proposed as a special RNN structure to model long-range
dependencies in various previous studies. However, LSTM
is not suitable for handling spatiotemporal data because the
input-to-state and state-to-state are all full connections thus
no spatial information is encoded. To tackle this problem,
Conv-LSTM (Xingjian et al. 2015) is put forward by using
a convolution operator in the state-to-state and input-to-state
transitions.

In our network, Conv-LSTM works as a memory unit to
capture and integrate the previous support set feature for
better multi-shot learning in semantic segmentation. Conv-
LSTM’s advantage is not only modeling the sequential data,
but also sequentially filtering and fusing the data by gate
mechanism. This method gives us more interpretability and
can better smoothen our k-shot learning result compared
with traditional fusion method.

Our Method
Problem Formulation
We follow the paradigm and notations in (Shaban et al.
2017), which are detailed in Table 1. The target is to learn a
model f(Iq, S) that, when given a support set S and query
image Iq , predicts a binary mask M̂q for the semantic class
l. The f function is parameterized by neural networks of the
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Figure 2: Attention-based Multi-Context Guiding Network Architecture for One-Shot Segmentation. It includes three parts:
(1). the support branch. (2). the query branch. (3). A-MCG module. Res1, 2, 3, 4, 5 represent different block in ResNet. C is
1× 1 convolution unit, stride=2 convolution is employed when the feature map size becomes smaller. We design two exclusive
location settings of attention mechanism: A1, A2. The details of the attention architecture are illustrated in Fig. 4.

support branch and the query branch.
During training, the algorithm has access to a large set of

image-mask pairs D = {(Ij , Y j)}Nj=1 where Y j ∈ LH×W
train

is the binary mask for training image Ij . At testing, the
query images are only annotated for new(unseen) semantic
classes i.e. Ltrain ∩ Ltest = φ, which leads us to divide
the PASCAL VOC12 dataset like Table 2. This is the key
difference between one-shot learning for segmentation and
traditional segmentation, what we really care about is the
segmentation performance on unseen data. Similar to the ex-
tension from one-shot learning to k-shot learning in classifi-
cation task, k-shot learning can also be applied in semantic
segmentation. In OSLSM (Shaban et al. 2017), k-shot learn-
ing results are fused by a logical OR operation between the
k binary masks.

Attention Mechanism Review
Residual Attention Module(RAM) is first proposed by Wang
et al. (Wang et al. 2017) for image classification. We here
review the structure of RAM in Fig. 4. The original RAM
proceeds many ablation studies for its setting, we directly
use the explored optimal structure. In our paper, we mainly
explore the attention location in our MCG module in Sec.
Experimental Result.

The RAM actually utilizes a two-scale(down sample 2
times, then up sample 2 times ) Hourglass structure to con-
struct a soft attention mask M(x). In the original ResNet (He
et al. 2016), residual learning is formulated as:

Hi,c = x+ Fi,c(x) (1)

where Fi,c(x) approximates the residual function, i ranges
over all spatial positions and c ∈ {1, ..., C} is the index of
the channel.

In RAM, the attention module is modified as:

Hi,c = (1 +Mi,c(x)) ∗ Fi,c(x) (2)

M(x) ranges from [0,1] because of the sigmoid function.
With M(x) approximating 0, H(x) will approximate original
features F(x). The key of RAM lies in M(x), which works
as feature selectors that enhance good features and suppress
noises from trunk features. This characteristic of RAM is
particularly important for few-shot learning cases.

Except that, we also explored the SE block (Hu, Shen,
and Sun 2018), which is a typical channel attention struc-
ture. Our later ablation study in Sec. Experimental Result
shows that SE block fails to compete with RAM under the
condition of same parameters.

Attention-based MCG
We propose an Attention-based Multi-Context Guiding net-
work (A-MCG) illustrated in Fig. 2. Our A-MCG network
is composed of three parts: (1). the support branch. (2). the
query branch. (3). A-MCG(fusion) branch. The backbones
of the support branch, the query branch are ResNet101. We
elaborate our network as input image size 320 × 320, and
their output feature map size is also marked in Fig. 2. No-
tably, the convolutions in Res-4, Res-5 blocks are equipped
with Dilated Convolution (Chen et al. 2018) whose dilated
rate=2. Therefore, the feature map size no long decreases



after Res-3, but the receptive field continues to be enlarged
due to Dilated Convolution.

Our A-MCG module tries to utilize multi-context fea-
ture from the support branch to globally improve the query
branch segmentation. We attempt two types of attention lo-
cation pattern. In the following, we denote the bis as feature
maps after Res-i block in the support branch, biq as feature
maps after Res-i block in query branch, C as naive convolu-
tion(without ReLU (Nair and Hinton 2010), BN), H as our
attention function, Fi as the mixed features after Res-i block
of the support branch and the query branch.

Therefore, we mainly come up with three variants.
(1). Multi-context guiding module:

Fi+1 = C{C(bis) + C(biq) + Fi} (3)

Multi-context information from both branches are mixed by
convolution operation. Notably, convolution here doesn’t in-
clude ReLU, BN.

(2). Multi-context guiding with separate attention:

Fi+1 = C{H(C(bis)) +H(C(biq)) + Fi} (4)

which corresponds to A1 in Fig. 2.
Attention mechanism is employed separately both in the

query branch and the support branch.
(3). Multi-context guiding with share attention:

Fi+1 = C{H(C(bis) + C(biq) + Fi)} (5)

which corresponds to A2 in Fig. 2.
Attention mechanism is applied after the fusion of the

query branch and the support branch.

Convolutional LSTM for k-shot learning
In previous work, we mainly focus on the circumstance of 1-
shot learning in semantic segmentation. How shall we deal
with k-shot learning? In OSLSM (Shaban et al. 2017), k-shot
learning results are fused by a logical OR operation. How-
ever, this straightforward process is unexplainable and fails
to utilize the inner relationship between sequential support
images.

To better solve this multi-shot learning problem, we at-
tempt to embed Conv-LSTM (Xingjian et al. 2015) at the
end of the fusion branch as illustrated in Fig. 2. At last, a
1 × 1 convolution will be appended to generate segmenta-
tion probability map.

Conv-LSTM is first applied to the precipitation nowcast-
ing task. The key idea of Conv-LSTM is to implement all
operations, including state-to-state and input-to-state tran-
sitions, with kernel-based convolutions. The inner feature
of the sequential support image mask can be sustained by
Conv-LSTM. We here adopt a popular LSTM variant with
“peephole connections” (Gers, Schraudolph, and Schmid-
huber 2002). In detail, the three gating functions in Conv-
LSTM are calculated according to the equations below:

it = σ(W x,i⊗Xt+W h,i⊗Ht−1 +W c,i⊗Ct−1) (6)

ot = σ(W x,o ⊗Xt +W h,o ⊗Ht−1 +W c,o ⊗Ct) (7)

ft = σ(W x,f⊗Xt+W h,f⊗Ht−1+W c,f⊗Ct−1) (8)
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Figure 3: Unrolling view of Conv-LSTM. Q, F, S represents
the query branch, the fusion branch, the support branch ac-
cordingly. Best viewed in color.

where we let Xt,Ht be the input/hidden state at time t re-
spectively. ⊗ represents spatio-temporal convolution opera-
tor.

Investigating previous H and current X , the recurrent
model synthesizes a new proposal for the cell state, namely

C̃t = tanh(W x,c ⊗Xt +W h,c ⊗Ht−1) (9)

The final cell state is obtained by linearly fusing the new
proposal C̃t and previous state Ct−1:

Ct = ft �Ct−1 + it � C̃t (10)

where � denotes the Hadamard product. To continue the
recurrent process, it also renders a filtered new H:

Ht = ot � tanh(Ct) (11)

In our previous structure, the network is trained on one-
shot support set. Once Conv-LSTM is imported into our
framework, it will enable us to train with k-shot support set.
For every batch(if batch size=1), one query image and k sup-
port image masks will be fed into our neural network.

We unroll this procedure in Fig. 3 for better understand-
ing the k-shot fusion process. k-shot support image masks
enter Conv-LSTM in turn. Conv-LSTM plays a critical role
in summarizing the total features of the k-shot support image
masks.

For better mixing the feature from the support set in k-
shot learning, a function loss is designed as follows:

L = − 1

ks2

k∑
i=0

s∑
m=0,n=0

Ym,nlogXm,n (12)

where Y is binary label, X means the neural network output
probability, k is shot number, s represents image size.

This loss enforces our A-MCG module to function well
on every support set image rather than only supervises the
segmentation of single support image.

Experimental Result
Training details
We implement our code based on the tensorflow frame-
work (Abadi et al. 2016). Specially, a scaffold framework
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named tensorpack (Wu and others 2016) is used for quickly
setting up our experiment. All our models are trained by
Stochastic Gradient Descent(SGD) (Bottou 2010) solver
with learning rate=1e-4, momentum=0.99 on one Nvidia Ti-
tan XP GPU. To fully fill GPU memory, we set the batch size
12. The weights of the support branch and the query branch
are initialized with ImageNet (Deng et al. 2009) pre-trained
weights. For the weight initialization of A-MCG module,
Xavier initialization (Glorot and Bengio 2010) is adopted.
All the images in the support and query branch are resized
to 320 × 320. No further augmentation is employed except
the image resizing. For Batch Normalization(BN) (Ioffe and
Szegedy 2015), we employ current batch statistics at training
and use the moving average statistics of BN during valida-
tion time.

We use the cross-entropy loss as the object function for
training the network. The loss is summed up over all the
pixels in a mini-batch.

When we experiment with Conv-LSTM for k-shot learn-
ing, we set k=5 by default. The max batch size can only be
6 because every time k support image masks will be fed into
the support branch. Layer Normalization (Ba, Kiros, and
Hinton 2016) is utilized in our Conv-LSTM for speeding up
convergence.

Dataset and Metric
Dataset: We utilize dataset PASCAL-5i (Shaban et al.
2017) to conduct our experiment. This dataset is originated

Table 2: PASCAL-i5 group information. The top table dis-
plays 4 groups of label and their semantic classes. The bot-
tom table shows 4 sub-datasets and their training, validation
components.

label set index Semantic Classes

0 aeroplane, bicycle, bird, boat, bottle
1 bus, car, cat, chair, cow
2 diningtable, dog, horse, motorbike, person
3 potted plant, sheep, sofa, train, tv/monitor

sub-dataset train label set val label set

0 1,2,3 0
1 0,2,3 1
2 0,1,3 2
3 0,1,2 3

from PASCAL VOC12 (Everingham et al. ) and extended
annotations from SDS (Hariharan et al. ). The set of 20
classes in PASCAL VOC12 is divided into four sub-datasets
as indicated in Table 2. Three sub-datasets are used as the
training label-set Ltrain, the left one sub-dataset is utilized
for test label-set Ltest.

The training set Dtrain is composed of all image-mask
pairs from PASCAL VOC12 and SDS training sets that in-
clude at least one pixel in the segmentation mask from the
label-set Ltrain. The masks in Dtrain are modified into bi-
nary masks by setting pixels whose semantic class are not
in Ltrain as background class lφ. The test set Dtest is from
PASCAL VOC12 and SDS validation sets, and the process-
ing procedure for test set Dtest is similar with training set
Dtrain. Our evaluation mIoU is the average of 5 sub-dataset
mIoUs. For a fair comparison with (Shaban et al. 2017), we
take the same random seed and sample N=1000 examples
for testing each of our models.

Metric: To compare the quantitative performance of the
different models, mean intersection over union(mIoU) over
two classes is used for our benchmark evaluation. For bi-
nary segmentation in our work, we first calculate the 2 ×
2 confusion matrix, then compute the according IoUl as

tpl
tpl+fpl+fnl

. tpl is the number of true positives for class l,
fpl is the number of false positives for class l and fnl is the
number of false negatives for class l. The final mIoU is its
average over the set of classes.

Ablation Study
Baseline. Our method is mostly compared with
OSLSM (Shaban et al. 2017) and co-FCN (Rakelly et
al. 2018). Both of them utilize the VGG (Simonyan and
Zisserman 2014) as basic model. Different from them, we
adopt ResNet101 (He et al. 2016) as our basic model, for
ResNet101 owns much less parameter than VGG16, thus it
is less prone to over-fitting. Besides, ResNet also enables
larger batch size training in our architecture.

After removing the fully connected layers in the end, our



Table 3: Ablation Study for fusion width. The experiment is
conducted on PASCAL-i5 sub-dataset 0.

fusion width 1-shot #params(M)

64 63.4 85.6
128 63.3 86.1
256 63.6 87.2
512 63.6 89.8
1024 63.2 96.1

Table 4: Ablation Study for multi-context pattern. The ex-
periment is conducted on PASCAL-i5 sub-dataset 0.

Method 1-shot #params(M)

context-2345 63.6 87.2
context-45 63.2 86.7
context-5 61.2 86.1

ResNet101 baseline becomes a fully-convolutional struc-
ture. Support branch and query branch are fused by element-
wise Add between the Res-5 output of them, followed by a
naive convolution.

MCG: We explore several factors of our Multi-Context
Guiding(MCG) architecture such as (1). fusion width. Fu-
sion width is the channel number in the MCG branch, all the
features in the support branch and the query branch will be
transformed into features with width of fusion width. Differ-
ent settings of fusion width are stated in Table 3. (2). multi-
context pattern, we try to explore what kind of context com-
bination is better for the few-shot learning in Table 4. The
number after “context” is the feature we will adopt for fu-
sion. For example, context-45 means that only features from
Res-4, Res-5 are used for fusion. For convenience, we only
proceed the ablation study in the sub-dataset 0 in this part.

From Table 3, we can conclude that when the fusion width
is too small such as 64 ,128, the one-shot mIoU is 0.2%
lower than width=256. Meanwhile, larger fusion width like
1024 will make the mIoU worse due to over-fitting. Taking
into consideration of the balance between mIoU and param-
eter cost, we choose fusion width=256 as our default setting.
The latter ablation study will also adopt the default value.

As for the multi-context pattern in Table 4, more level
context fusion often leads to a better result. Context-2345
outperforms context-5 nearly 2.4% mIoU. This shows that
our multi-context guiding strategy works as our motiva-
tion. Multi-context information fusion from both the support
branch and the query branch could efficiently “support” the
query branch’s segmentation.

Attention Mechanism. We set two variants about the at-
tention module: (1). Spatial Attention. Residual Attention
Module(RAM) is applied here as a representative method.
(2). Channel Attention. SENet (Hu, Shen, and Sun 2018) is
explored in our ablation study. At the same time, two at-
tention location patterns “separate” and “share” are also ex-
plored. “sep” denotes the support branch and query branch
adopt separate attention. “share” represents the support

Low High

Before After

Before After

Figure 5: Attention Mechanism Visualization. Two images
are demonstrated for the comparison between “before atten-
tion” and “after attention”. The image is overlaid with pre-
dicted mask in green. The according histogram of the feature
map is displayed in the right side. The feature map’s activa-
tion value is normalized to 1. The support image is ignored.
Best viewed in color.

branch and query branch share the same attention.
As shown in Table 5. We can find that Spatial Attention

works much better than Channel Attention under the circum-
stance of same parameters. We conclude that spatial infor-
mation is more useful in dense pixel task like image seg-
mentation, while channel information plays a more impor-
tant role in classification task.

It can be obviously figured out that sharing the same at-
tention is basically better than separate attention. We spec-
ulate that for the support branch, the input has been already
masked so that it does not need attention mechanism, while
sharing attention mechanism will make the query branch pay
more attention to the support branch’s input mask.

On the other hand, we demonstrate some images’ feature
map visualization and feature map histogram in Fig. 5. From
the visualization, we can qualitatively observe that the fea-
ture map becomes more focusing on the target segmentation
objects. As for the feature map histogram, we can quantita-
tively discovery that the histogram peak move towards small
value. We owe this observation to the fact that the Spatial At-
tention enhances good features and suppresses noises from
trunk features.

Conv-LSTM for k-shot learning. We mainly contrast
two loss variants in Conv-LSTM. (1). 1-loss Conv-LSTM.
Only output from the last shot is supervised. (2). 5-loss
Conv-LSTM. Every output from Conv-LSTM is supervised.
As indicated in Table 6, the Conv-LSTM highly boosts our
mIOU both in 1-shot and 5-shot learning. 1-shot result on 1-
loss Conv-LSTM is 0.7% lower than our baseline, we spec-
ulate that 1-loss Conv-LSTM fails to fully supervise single-
shot learning. Interestingly, both the 1-shot and 5-shot result



Table 5: Ablation Study for Attention Mechanism. Chan-
nelAttention means SENet Block, SpatialAttention means
Residual Attention Block. “sep” denotes the support branch
and the query branch adopt separate attention. “share” rep-
resents the support branch and the query branch share the
same attention.

Method 1-shot #params(M)

MCG 63.3 87.2
MCG-ChannelAttention-sep1 63.6 89.6

MCG-ChannelAttention-share2 61.7 89.8
MCG-SpatialAttention-sep 63.3 93.3

MCG-SpatialAttention-share 65.8 89.5
1 For fair comparison with SpatialAttention method, we

change the fusion width to 428 to make #param nearly the
same.

2 For fair comparison with SpatialAttention method, we
change the fusion width to 480 to make #param nearly the
same.

Table 6: Ablation Study for loss function in Conv-LSTM.
Baseline is our A-MCG module, we mainly compare the dif-
ference between 1-loss Conv-LSTM and 5-loss LSTM. The
experiment is conducted on PASCAL-i5 sub-dataset 0.

Method 1-shot 5-shot #params(M)

baseline 65.8 66.2 89.5
1-loss Conv-LSTM 65.1 67.5 90.8
5-loss Conv-LSTM 66.1 67.9 90.8

on 5-loss LSTM outperform our baseline, which sufficiently
validates our motivation.

Furthermore, we also conduct k-shot learning where k
ranges from 1 to 10 in Fig. 6. k-loss Conv-LSTM fully sur-
passes the traditional logical or method in all shot num-
ber range. When k ≤ 4 , the performance of 1-loss Conv-
LSTM is less than 5-loss Conv-LSTM, while partially larger
than our baseline. This proves that our 5-loss Conv-LSTM
better integrates multi-shot support features than traditional
method.

Result in PASCAL VOC. As shown in Table 8, our A-
MCG architecture could outperform nearly 61.2% in 1-shot
mIoU, 62.2% in 5-shot mIoU. Based on our baseline, we
continue applying the MCG, attention mechanism, Conv-
LSTM, reach a new state-of-the-art result on PASCAL-i5
dataset in the end.

Result in COCO Dataset. To evaluate our algorithm in
more complex dataset, we evaluate our algorithm in COCO
dataset. For the COCO dataset evaluation, we divide the 80
classes into 4 sub-dataset, thus every sub-dataset is com-
prised of 20 classes. We cross-validate the performance of
our algorithm and the result is shown in Table 7. As COCO
dataset owns much more classes compared with Pascal VOC
(80 vs 20). The complexity of this dataset makes our per-
formance much less obvious in COCO than in PASCAL
VOC. However, the result in Table 7 demonstrates that our
A-MCG-Conv-LSTM model persistently improve our base-

Figure 6: The relationship between shot number and vali-
dation mIoU, we mainly compare among three multi-shot
learning fusion strategies: (1). Logical Or. (2). 1-loss Conv-
LSTM. (3). k-loss Conv-LSTM(k=5 in our experiment). The
experiment is conducted on PASCAL-i5 sub-dataset 0.

Table 7: COCO Dataset result.
method 1-shot 5-shot #params(M)

Baseline 49.98 51.2 85.1
A-MCG-Conv-LSTM 52 54.7 90.8

line about 3% mIoU both in 1-shot and 5-shot result.

Conclusion

We propose an Attention-based Multi-Context Guiding net-
work (A-MCG) which incorporates multi-level concentrated
context. The benefits of our network are three folds: (1).
The shallow part of our network generates low-level seman-
tic features, meanwhile deep part of our network captures
high-level semantic features. Context features in equal level
are fused by our MCG module, which highly facilitates the
support branch to globally “support” the query branch. (2).
Spatial Attention is employed along with the whole MCG
branch, which makes our network focus on different scales
of context information. (3). The import of Conv-LSTM en-
ables the network to better integrate the feature from the
support set in multi-shot semantic segmentation. The perfor-
mance of our model surpasses state-of-the-art in few-shot se-
mantic segmentation. In the future, we will exploit few-shot
learning in multi-class segmentation at one time.

Table 8: Result on PASCAL-i5 Dataset. All results are
computed by taking the average of the 5 sub-datasets in
PASCAL-i5. The 5-shot result is obtained by logic or fusion
except the method with Conv-LSTM.

Method 1-shot 5-shot #params(M)

OSLSM (Shaban et al. 2017) 40.8 43.9 276.7
co-FCN(Multi-class) (Rakelly et al. 2018) 50.9 50.9 –

co-FCN(Overall) (Rakelly et al. 2018) 60.1 60.8 –

Baseline 53.0 54.8 85.1
MCG 55.3 56.5 87.2

A-MCG 57.3 57.8 89.5
A-MCG-Conv-LSTM 61.2 62.2 90.8
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