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Abstract. This paper introduces data augmentation for point clouds
by interpolation between examples. Data augmentation by interpolation
has shown to be a simple and effective approach in the image domain.
Such a mixup is however not directly transferable to point clouds, as we
do not have a one-to-one correspondence between the points of two dif-
ferent objects. In this paper, we define data augmentation between point
clouds as a shortest path linear interpolation. To that end, we intro-
duce PointMixup, an interpolation method that generates new examples
through an optimal assignment of the path function between two point
clouds. We prove that our PointMixup finds the shortest path between
two point clouds and that the interpolation is assignment invariant and
linear. With the definition of interpolation, PointMixup allows to intro-
duce strong interpolation-based regularizers such as mixup and manifold
mixup to the point cloud domain. Experimentally, we show the potential
of PointMixup for point cloud classification, especially when examples
are scarce, as well as increased robustness to noise and geometric trans-
formations to points. The code for PointMixup and the experimental
details are publicly available1.
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1 Introduction

The goal of this paper is to classify a cloud of points into their semantic category,
be it an airplane, a bathtub or a chair. Point cloud classification is challenging,
as they are sets and hence invariant to point permutations. Building on the pi-
oneering PointNet by Qi et al. [15], multiple works have proposed deep learning
solutions to point cloud classification [16, 12, 29, 30, 36, 23]. Given the progress
in point cloud network architectures, as well as the importance of data aug-
mentation in improving classification accuracy and robustness, we study how
could data augmentation be naturally extended to support also point cloud
data, especially considering the often smaller size of point clouds datasets (e.g.
ModelNet40 [31]). In this work, we propose point cloud data augmentation by
interpolation of existing training point clouds.

? Equal contribution. {y.chen3, t.hu}@uva.nl
1 Code is available at: https://github.com/yunlu-chen/PointMixup/
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Fig. 1: Interpolation between point clouds. We show the interpolation be-
tween examples from different classes (airplane/chair, and monitor/bathtub)
with multiple ratios λ. The interpolants are learned to be classified as (1 − λ)
the first class and λ the second class. The interpolation is not obtained by learn-
ing, but induced by solving the optimal bijective correspondence which allows
the minimum overall distance that each point in one point cloud moves to the
assigned point in the other point cloud.

To perform data augmentation by interpolation, we take inspiration from
augmentation in the image domain. Several works have shown that generating
new training examples, by interpolating images and their corresponding labels,
leads to improved network regularization and generalization, e.g., [8, 24, 34, 26].
Such a mixup is feasible in the image domain, due to the regular structure of
images and one-to-one correspondences between pixels. However, this setup does
not generalize to the point cloud domain, since there is no one-to-one correspon-
dence and ordering between points. To that end, we seek to find a method to
enable interpolation between permutation invariant point sets.

In this work, we make three contributions. First, we introduce data augmen-
tation for point clouds through interpolation and we define the augmentation as
a shortest path interpolation. Second, we propose PointMixup, an interpolation
between point clouds that computes the optimal assignment as a path function
between two point clouds, or the latent representations in terms of point cloud.
The proposed interpolation strategy therefore allows usage of successful regu-
larizers of Mixup and Manifold Mixup [26] on point cloud. We prove that (i)
our PointMixup indeed finds the shortest path between two point clouds; (ii)
the assignment does not change for any pairs of the mixed point clouds for any
interpolation ratio; and (iii) our PointMixup is a linear interpolation, an im-
portant property since labels are also linearly interpolated. Figure 1 shows two
pairs of point clouds, along with our interpolations. Third, we show the empirical
benefits of our data augmentation across various tasks, including classification,
few-shot learning, and semi-supervised learning. We furthermore show that our
approach is agnostic to the network used for classification, while we also become
more robust to noise and geometric transformations to the points.
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2 Related Work

Deep learning for point clouds. Point clouds are unordered sets and hence
early works focus on analyzing equivalent symmetric functions which ensures per-
mutation invariance. [17, 15, 33]. The pioneering PointNet work by Qi et al. [15]
presented the first deep network that operates directly on unordered point sets. It
learns the global feature with shared multi-layer perceptions and a max pooling
operation to ensure permutation invariance. PointNet++ [16] extends this idea
further with hierarchical structure by relying on a heuristic method of farthest
point sampling and grouping to build the hierarchy. Likewise, other recent meth-
ods follow to learn hierarchical local features either by grouping points in various
manners [10, 12, 29, 30, 32, 36, 23]. Li et al. [12] propose to learn a transformation
from the input points to simultaneously solve the weighting of input point fea-
tures and permutation of points into a latent and potentially canonical order.
Xu et al. [32] extends 2D convolution to 3D point clouds by parameterizing a
family of convolution filters. Wang et al. [29] proposed to leverage neighborhood
structures in both point and feature spaces.

In this work, we aim to improve point cloud classification for any point-based
approach. To that end, we propose a new model-agnostic data augmentation.
We propose a Mixup regularization for point clouds and show that it can build
on various architectures to obtain better classification results by reducing the
generalization error in classification tasks. A very recent work by Li et al. [11]
also considers improving point cloud classification by augmentation. They rely
on auto-augmentation and a complicated adversarial training procedure, whereas
in this work we propose to augment point clouds by interpolation.

Interpolation-based regularization. Employing regularization approaches
for training deep neural networks to improve their generalization performances
have become standard practice in deep learning. Recent works consider a reg-
ularization by interpolating the example and label pairs, commonly known as
Mixup [24, 8, 34]. Manifold Mixup [26] extends Mixup by interpolating the hid-
den representations at multiple layers. Recently, an effort has been made on
applying Mixup to various tasks such as object detection [35] and segmenta-
tion [7]. Different from existing works, which are predominantly employed in the
image domain, we propose a new optimal assignment Mixup paradigm for point
clouds, in order to deal with their permutation-invariant nature.

Recently, Mixup [34] has also been investigated from a semi-supervised learn-
ing perspective[3, 27, 2]. Mixmatch [3] guesses low-entropy labels for unlabelled
data-augmented examples and mixes labelled and unlabelled data using Mixup [34].
Interpolation Consistency Training [27] utilizes the consistency constraint be-
tween the interpolation of unlabelled points with the interpolation of the predic-
tions at those points. In this work, we show that our PointMixup can be inte-
grated in such frameworks to enable semi-supervised learning for point clouds.
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3 Point cloud augmentation by interpolation

3.1 Problem setting

In our setting, we are given a training set {(Sm, cm)}Mm=1 consisting of M point
clouds. Sm = {pmn }Nn=1 ∈ S is a point cloud consisting of N points, pmn ∈ R3 is
the 3D point, S is the set of such 3D point clouds with N elements. cm ∈ {0, 1}C
is the one-hot class label for a total of C classes. The goal is to train a function
h : S 7→ [0, 1]C that learns to map a point cloud to a semantic label distribution.
Throughout our work, we remain agnostic to the type of function h used for the
mapping and we focus on data augmentation to generate new examples.

Data augmentation is an integral part of training deep neural networks, es-
pecially when the size of the training data is limited compared to the size of the
model parameters. A popular data augmentation strategy is Mixup [34]. Mixup
performs augmentation in the image domain by linearly interpolating pixels, as
well as labels. Specifically, let I1 ∈ RW×H×3 and I2 ∈ RW×H×3 denote two
images. Then a new image and its label are generated as:

Imix(λ) = (1− λ) · I1 + λ · I2, (1)

cmix(λ) = (1− λ) · c1 + λ · c2, (2)

where λ ∈ [0, 1] denotes the mixup ratio. Usually λ is sampled from a beta dis-
tribution λ ∼ Beta(γ, γ). Such a direct interpolation is feasible for images as
the data is aligned. In point clouds, however, linear interpolation is not straight-
forward. The reason is that point clouds are sets of points in which the point
elements are orderless and permutation-invariant. We must, therefore, seek a
definition of interpolation on unordered sets.

3.2 Interpolation between point clouds

Let S1 ∈ S and S2 ∈ S denote two training examples on which we seek to
perform interpolation with ratio λ to generate new training examples. Given a
pair of source examples S1 and S2, an interpolation function, fS1→S2

: [0, 1] 7→ S
can be any continuous function, which forms a curve that joins S1 and S2 in
a metric space (S, d) with a proper distance function d. This means that it is
up to us to define what makes an interpolation good. We define the concept of
shortest-path interpolation in the context of point cloud:

Definition 1 (Shortest-path interpolation). In a metric space (S, d), a
shortest-path interpolation f∗S1→S2

: [0, 1] 7→ S is an interpolation between the
given pair of source examples S1 ∈ S and S2 ∈ S, such that for any λ ∈ [0, 1],
d(S1, S

(λ)) + d(S(λ), S2)) = d(S1, S2) holds for S(λ) = f∗S1→S2
(λ) being the in-

terpolant.

We say that Definition 1 ensures the shortest path property because the triangle
inequality holds for any properly defined distance d : d(S1, S

(λ))+d(S(λ), S2)) ≥
d(S1, S2). The intuition behind this definition is that the shortest path prop-
erty ensures the uniqueness of the label distribution on the interpolated data.
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Fig. 2: Intuition of shortest-path interpolation. The examples lives on a
metric space (S, d) as dots in the figure. The dashed lines are the interpolation
paths between different pairs of examples. When the shortest-path property is
ensured (left), the interpolation paths from different pairs of source examples are
likely to be not intersect in a complicated metric space. While in non-shortest
path interpolation (right), the paths can intertwine with each other with a much
higher probability, making it hard to tell which pair of source examples does the
mixed data come from.

To put it otherwise, when computing interpolants from different sources, the
interpolants generated by the shortest-path interpolation is more likely to be
discriminative than the ones generated by a non-shortest-path interpolation.

To define an interpolation for point clouds, therefore, we must first select
a reasonable distance metric. Then, we opt for the shorterst-path interpolation
function based on the selected distance metric. For point clouds a proper distance
metric is the Earth Mover’s Distance (EMD), as it captures well not only the
geometry between two point clouds, but also local details as well as density
distributions [5, 1, 13]. EMD measures the least amount of total displacement
required for each of the points in the first point cloud, xi ∈ S1, to match a
corresponding point in the second point cloud, yj ∈ S2. Formally, the EMD for
point clouds solves the following assignment problem:

φ∗ = arg min
φ∈Φ

∑
i

‖xi − yφ(i)‖2, (3)

where Φ = {{1, . . . , N} 7→ {1, . . . , N}} is the set of possible bijective assign-
ments, which give one-to-one correspondences between points in the two point
clouds. Given the optimal assignment φ∗, the EMD is then defined as the average
effort to move S1 points to S2:

dEMD =
1

N

∑
i

‖xi − yφ∗(i)‖2. (4)

3.3 PointMixup: Optimal assignment interpolation for point clouds

We propose an interpolation strategy, which can be used for augmentation that
is analogous of Mixup [34] but for point clouds. We refer to this proposed Point-
Mixup as Optimal Assignment (OA) Interpolation, as it relies on the optimal
assignment on the basis of the EMD to define the interpolation between clouds.
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Given the source pair of point clouds S1 = {xi}Ni=1 and S2 = {yj}Nj=1, the Opti-
mal Assignment (OA) interpolation is a path function f∗S1→S2

: [0, 1] 7→ S. With
λ ∈ [0, 1],

f∗S1→S2
(λ) = {ui}Ni=1, where (5)

ui = (1− λ) · xi + λ · yφ∗(i), (6)

in which φ∗ is the optimal assignment from S1 to S2 defined by Eq. 3. Then the

interpolant S
S1→S2,(λ)
OA (or S

(λ)
OA when there is no confusion) generated by the

OA interpolation path function f∗S1→S2
(λ) is the required augmented data for

point cloud Mixup.

S
(λ)
OA = {(1− λ) · xi + λ · yφ∗(i)}Ni=1. (7)

Under the view of f∗S1→S2
being a path function in the metric space (S, dEMD),

f is expected to be the shortest path joining S1 and S2 since the definition of
the interpolation is induced from the EMD.

3.4 Analysis

Intuitively we expect that PointMixup is a shortest path linear interpolation.
That is, the interpolation lies on the shortest path joining the source pairs, and
the interpolation is linear with regard to λ in (S, dEMD), since the definition of
the interpolation is derived from the EMD. However, it is non-trivial to show the
optimal assignment interpolation abides to a shortest path linear interpolation,
because the optimal assignment between the mixed point cloud and either of the
source point cloud is unknown. It is, therefore, not obvious that we can ensure
whether there exists a shorter path between the mixed examples and the source
examples. To this end, we need to provide an in-depth analysis.

To ensure the uniqueness of the label distribution from the mixed data, we
need to show that the shortest path property w.r.t. the EMD is fulfilled. More-
over, we need to show that the proposed interpolation is linear w.r.t the EMD,
in order to ensure that the input interpolation has the same ratio as the la-
bel interpolation. Besides, we evaluate the assignment invariance property as
a prerequisite knowledge for the proof for the linearity. This property implies
that there exists no shorter path between interpolants with different λ, i.e., the
shortest path between the interpolants is a part of the shortest path between the
source examples. Due to space limitation, we sketch the proof for each property.
The complete proofs are available in the supplementary material.

We start with the shortest path property. Since the EMD for point cloud is a
metric, the triangle inequality dEMD(A,B) +dEMD(B,C) ≥ dEMD(A,C) holds
(for which a formal proof can be found in [19]). Thus we formalize the shortest
path property into the following proposition:

Property 1 (shortest path) Given the source examples S1 and S2, ∀λ ∈ [0, 1],

dEMD(S1, S
(λ)
OA) + dEMD(S

(λ)
OA, S2) = dEMD(S1, S2).
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Sketch of Proof From the definition of the EMD we can derive dEMD(S1, S
(λ)
OA)+

dEMD(S2, S
(λ)
OA) ≤ dEMD(S1, S2). Then from the triangle inequity of the EMD,

only the equality remains. ut

We then introduce the assignment invariance property of the OA Mixup as an
intermediate step for the proof of the linearity of OA Mixup. The property shows
that the assignment does not change for any pairs of the mixed point clouds with
different λ. Moreover, the assignment invariance property is important to imply
that the shortest path between the any two mixed point clouds is part of the
shortest path between the two source point clouds.

Property 2 (assignment invariance) S
(λ1)
OA and S

(λ2)
OA are two mixed point

clouds from the same given source pair of examples S1 and S2 as well as the mix

ratios λ1 and λ2 such that 0 ≤ λ1 < λ2 ≤ 1. Let the points in S
(λ1)
OA and S

(λ2)
OA

be ui = (1− λ1) · xi + λ1 · yφ∗(i) and vk = (1− λ2) · xk + λ2 · yφ∗(k), where φ∗ is
the optimal assignment from S1 to S2. Then the identical assignment φI is the

optimal assignment from S
(λ1)
OA to S

(λ2)
OA .

Sketch of Proof We first prove that the identical mapping is the optimal

assignment from S1 to S
(λ1)
OA from the definition of the EMD. Then we prove

that φ∗ is the optimal assignment from S
(λ1)
OA to S2. Finally we prove that the

identical mapping is the optimal assignment from S
(λ1)
OA to S

(λ2)
OA similarly as the

proof for the first intermediate argument. ut

Given the property of assignment invariance, the linearity follows:

Property 3 (linearity) For any mix ratios λ1 and λ2 such that 0 ≤ λ1 < λ2 ≤
1, the mixed point clouds S

(λ1)
OA and S

(λ2)
OA satisfies that dEMD(S

(λ1)
OA , S

(λ2)
OA ) =

(λ2 − λ1) · dEMD(S1, S2).

Sketch of Proof The proof can be directly derived from the fact that the

identical mapping is the optimal assignment between S
(λ1)
OA and S

(λ2)
OA . ut

The linear property of our interpolation is important, as we jointly interpolate
the point clouds and the labels. By ensuring that the point cloud interpolation
is linear, we ensure that the input interpolation has the same ratio as the label
interpolation.

On the basis of the properties, we find that PointMixup is a shortest path
linear interpolation between point clouds in (S, dEMD).

3.5 Manifold PointMixup: Interpolate between latent point features

In standard PointMixup, only the inputs, i.e., the XYZ point cloud coordinates
are mixed. The input XYZs are low-level geometry information and sensitive
to disturbances and transformations, which in turn limits the robustness of the
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PointMixup. Inspired by Manifold Mixup [26], we can also use the proposed
interpolation solution to mix the latent representations in the hidden layers
of point cloud networks, which are trained to capture salient and high-level
information that is less sensitive to transformations. PointMixup can be applied
for the purpose of Manifold Mixup to mix both at the XYZs and different levels
of latent point cloud features and maintain their respective advantages, which is
expected to be a stronger regularizer for improved performance and robustness.

We describe how to mix the latent representations. Following [26], at each
batch we randomly select a layer l to perform PointMixup from a set of layers
L, which includes the input layer. In a point cloud network network, the in-
termediate latent representation at layer l (before the global aggregation stage
such as the max pooling aggregation in PointNet [15] and PointNet++ [16]) is

Z(l) = {(xi, z(x)i )}Nz
i=1, in which xi is 3D point coordinate and z

(x)
i is the corre-

sponding high-dimensional feature. For the mixed latent representation, given

the latent representation of two source examples are Z(l),1 = {(xi, z(x)i )}Nz
i=1 and

Z(l),2 = {(yi, z(y)i )}Nz
i=1, the optimal assignment φ∗ is obtained by the 3D point

coordinates xi, and the mixed latent representation then becomes

Z
(λ)
(l),OA = {(xmix

i , zmix
i )}, where

xmix
i = (1− λ) · xi + λ · yφ∗(i),

zmix
i = (1− λ) · z(x)i + λ · z(y)φ∗(i).

Specifically in PointNet++, three layers of representations are randomly selected
to perform Manifold Mixup: the input, and the representations after the first and
the second SA modules (See appendix of [16]).

4 Experiments

4.1 Setup

Datasets. We focus in our experiments on the ModelNet40 dataset [31]. This
dataset contains 12,311 CAD models from 40 man-made object categories, split
into 9,843 for training and 2,468 for testing. We furthermore perform experiments
on the ScanObjectNN dataset [25]. This dataset consists of real-world point
cloud objects, rather than sampled virtual point clouds. The dataset consists
of 2,902 objects and 15 categories. We report on two variants of the dataset,
a standard variant OBJ ONLY and one with heavy permutations from rigid
transformations PB T50 RS [25].

Following [12], we discriminate between settings where each dataset is pre-
aligned and unaligned with horizontal rotation on training and test point cloud
examples. For the unaligned settings, we randomly rotate the training point
cloud along the up-axis. Then, before solving the optimal assignment, we perform
a simple additional alignment step to fit and align the symmetry axes between
the two point clouds to be mixed. Through this way, the point clouds are better
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Fig. 3: Baseline interpolation variants. Top: point cloud interpolation
through random assignment. Bottom: interpolation through sampling.

aligned and we obtain more reasonable point correspondences. Last, we also
perform experiments using only 20% of the training data.

Network architectures. The main network architecture used throughout
the paper is PointNet++ [16]. We also report results with PointNet [15] and
DGCNN [29], to show that our approach is agnostic to the architecture that is
employed. PointNet learns a permutation-invariant set function, which does not
capture local structures induced by the metric space the points live in. Point-
Net++ is a hierarchical structure, which segments a point cloud into smaller
clusters and applies PointNet locally. DGCNN performs hierarchical operations
by selecting a local neighbor in the feature space instead of the point space,
resulting in each point having different neighborhoods in different layers.

Experimental details. We uniformly sample 1,024 points on the mesh faces
according to the face area and normalize them to be contained in a unit sphere,
which is a standard setting [15, 16, 12]. In case of mixing clouds with different
number of points, we can simply replicate random elements from the each point
set to reach the same cardinality. During training, we augment the point clouds
on-the-fly with random jitter for each point using Gaussian noise with zero mean
and 0.02 standard deviation. We implement our approach in PyTorch [14]. For
network optimization, we use the Adam optimizer with an initial learning rate
of 10−3. The model is trained for 300 epochs with a batch size of 16. We follow
previous work [34, 26] and draw λ from a beta distribution λ ∼ Beta(γ, γ). We
also perform Manifold Mixup [26] in our approach, through interpolation on the
transformed and pooled points in intermediate network layers. In this work, we
opt to use the efficient algorithm and adapt the open-source implementation from
[13] to solve the optimal assignment approximation. Training for 300 epochs takes
around 17 hours without augmentation and around 19 hours with PointMixup
or Manifold PointMixup on a single NVIDIA GTX 1080 ti.

Baseline interpolations. For our comparisons to baseline point cloud aug-
mentations, we compare to two variants. The first variant is random assignment
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interpolation, where a random assignment φRA is used, to connect points from
both sets, yielding:

S
(λ)
RA = {(1− λ) · xi + λ · yφRA(i)}.

The second variant is point sampling interpolation, where random draws with-
out replacement of points from each set are made according to the sampling
frequency λ:

S
(λ)
PS = S

(1−λ)
1 ∪ S(λ)

2 ,

where S
(λ)
2 denotes a randomly sampled subset of S2, with bλNc elements. (b·c

is the floor function.) And similar for S1 with N − bλNc elements, such that

S
(λ)
PS contains exactly N points. The intuition of the point sampling variant is

that for point clouds as unordered sets, one can move one point cloud to another
through a set operation such that it removes several random elements from set
S1 and replace them with same amount of elements from S2.

4.2 Point cloud classification ablations

We perform four ablation studies to show the workings of our approach with
respect to the interpolation ratio, comparison to baseline interpolations and
other regularizations, as well robustness to noise.
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85

86
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Fig. 4: Effect of interpolation ra-
tios. MM denotes Manifold Mixup.

Effect of interpolation ratio. The
first ablation study focuses on the effect
of the interpolation ratio in the data aug-
mentation for point cloud classification.
We perform this study on ModelNet40
using the PointNet++ architecture. The
results are shown in Fig. 4 for the pre-
aligned setting. We find that regardless of
the interpolation ratio used, our approach
provides a boost over the setting with-
out augmentation by interpolation. Point-
Mixup positively influences point cloud
classification. The inclusion of manifold
mixup adds a further boost to the scores.
Throughout further experiments, we use γ = 0.4 for input mixup and γ = 1.5 for
manifold mixup in unaligned setting, and γ = 1.0 for input mixup and γ = 2.0
for manifold mixup in pre-aligned setting.

Comparison to baseline interpolations. In the second ablation study,
we investigate the effectiveness of our PointMixup compared to the two inter-
polation baselines. We again use ModelNet40 and PointNet++. We perform the
evaluation on both the pre-aligned and unaligned dataset variants, where for
both we also report results with a reduced training set. The results are shown
in Table 1. Across both the alignment variants and dataset sizes, our Point-
Mixup obtains favorable results. This result highlights the effectiveness of our
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Table 1: Comparison of PointMixup to baseline interpolations on Mod-
elNet40 using PointNet++. PointMixup compares favorable to excluding inter-
polation and to the baselines, highlighting the benefits of our shortest path
interpolation solution.

No mixup Random assignment Point sampling PointMixup

Manifold mixup × × X × X × X

Full dataset
Unaligned 90.7 90.8 91.1 90.9 91.4 91.3 91.7
Pre-aligned 91.9 91.6 91.9 92.2 92.5 92.3 92.7

Reduced dataset
Unaligned 84.4 84.8 85.4 85.7 86.5 86.1 86.6
Pre-aligned 86.1 85.5 87.3 87.2 87.6 87.6 88.6

Table 2: Evaluating our approach to other data augmentations (left)
and its robustness to noise and transformations (right). We find that
our approach with manifold mixup (MM) outperforms augmentations such as
label smoothing and other variations of mixup. For the robustness evaluation,
we find that our approach with strong regularization power from manifold mixup
provides more robustness to random noise and geometric transformations.

PointMixup

× X

Baseline with no mixing 86.1 –
Mixup – 87.6
Manifold mixup – 88.6

Mix input, not labels – 86.6
Mix input from same class – 86.4

Mixup latent (layer 1) – 86.9
Mixup latent (layer 2) – 86.8

Label smoothing (0.1) 87.2 –
Label smoothing (0.2) 87.3 –

Transforms PointMixup

× w/o MM w/ MM

Noise σ2 = 0.01 91.3 91.9 92.3
Noise σ2 = 0.05 35.1 51.5 56.5
Noise σ2 = 0.1 4.03 4.27 7.42

Z-rotation [-30,30] 74.3 70.9 77.8
X-rotation [-30,30] 73.2 70.8 76.8
Y-rotation [-30,30] 87.6 87.9 88.7

Scale (0.6) 85.8 84.5 86.3
Scale (2.0) 59.2 67.7 72.9

DropPoint (0.2) 84.9 78.1 90.9

approach, which abides to the shortest path linear interpolation definition, while
the baselines do not.

PointMixup with other regularizers. Third, we evaluate how well Point-
Mixup works by comparing to multiple existing data regularizers and mixup
variants, again on ModelNet40 and PointNet++. We investigate the following
augmentations: (i) Mixup [34], (ii) Manifold Mixup [26], (iii) mix input only
without target mixup, (iv) mix latent representation at a fixed layer (manifold
mixup does so at random layers), and (v) label smoothing [22]. Training is per-
formed on the reduced dataset to better highlight their differences. We show the
results in Table 2 on the left. Our approach with manifold mixup obtains the
highest scores. The label smoothing regularizer is outperformed, while we also
obtain better scores than the mixup variants. We conclude that PointMixup is
forms an effective data augmentation for point clouds.
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Fig. 5: Qualitative examples of PointMixup. We provide eight visualiza-
tions of our interpolation. The four examples on the left show interpolations for
different configurations of cups and tables. The four examples on the right show
interpolations for different chairs and cars.

Robustness to noise. By adding additional augmented training examples,
we enrich the dataset. This enrichment comes with additional robustness with
respect to noise in the point clouds. We evaluate the robustness by adding ran-
dom noise perturbations on point location, scale, translation and different rota-
tions. Note that for evaluation of robustness against up-axis rotation, we use the
models which are trained with the pre-aligned setting, in order to test also the
performance against rotation along the up-axis as a novel transform. The results
are in Table 2 on the right. Overall, our approach including manifold mixup pro-
vides more stability across all perturbations. For example, with additional noise
(σ = 0.05), we obtain an accuracy of 56.5, compared to 35.1 for the baseline.
We similar trends for scaling (with a factor of two), with an accuracy of 72.9
versus 59.2. We conclude that PointMixup makes point cloud networks such as
PointNet++ more stable to noise and rigid transformations.

Qualitative analysis. In Figure 5, we show eight examples of PointMix for
point cloud interpolation; four interpolations of cups and tables, four interpola-
tions of chairs and cars. Through our shortest path interpolation, we end up at
new training examples that exhibit characteristics of both classes, making for
sensible point clouds and mixed labels, which in turn indicate why PointMixup
is beneficial for point cloud classification.

4.3 Evaluation on other networks and datasets

With PointMixup, new point clouds are generated by interpolating existing point
clouds. As such, we are agnostic to the type of network or dataset. To highlight



PointMixup: Augmentation for Point Clouds. 13

Table 3: PointMixup on other networks (left) and another dataset (right).
We find our approach is beneficial regardless the network or dataset.

PointNet DGCNN

× w/o MM × w/o MM w/ MM

Full 89.2 89.9 92.7 92.9 93.1
Reduced 81.3 83.4 88.2 88.8 89.0

ScanObjectNN

× w/o MM w/ MM

Standard 86.6 87.6 88.5
Perturbed 79.3 80.2 80.6

this ability, we perform additional experiments on extra networks and an addi-
tional point cloud dataset.

PointMixup on other network architectures. We show the effect of
PointMixup to two other networks, namely PointNet [15] and DGCNN [29].
The experiments are performed on ModelNet40. For PointNet, we perform the
evaluation on the unaligned setting and for DGCNN with pre-aligned setting to
remain consistent with the alignment choices made in the respective papers. The
results are shown in Table 3 on the left. We find improvements when including
PointMixup for both network architectures.

PointMixup on real-world point clouds. We also investigate PointMixup
on point clouds from real-world object scans, using ScanObjectNN [25], which
collects object from 3D scenes in SceneNN [9] and ScanNet [4]. Here, we rely on
PointNet++ as network. The results in Table 3 on the right show that we can
adequately deal with real-world point cloud scans, hence we are not restricted to
point clouds from virtual scans. This result is in line with experiments on point
cloud perturbations.

4.4 Beyond standard classification

The fewer training examples available, the stronger the need for additional ex-
amples through augmentation. Hence, we train PointNet++ on ModelNet40 in
both a few-shot and semi-supervised setting.

Semi-supervised learning. Semi-supervised learning learns from a dataset
where only a small portion of data is labeled. Here, we show how PointMixup
directly enables semi-supervised learning for point clouds. We start from Inter-
polation Consistency Training [27], a state-of-the-art semi-supervised approach,
which utilizes Mixup between unlabeled points. Here, we use our Mixup for point
clouds within their semi-supervised approach. We evaluate on ModelNet40 using
400, 600, and 800 labeled point clouds. The result of semi-supervised learning are
illustrated in Table 4 on the left. Compared to the supervised baseline, which
only uses the available labelled examples, our mixup enables the use of addi-
tional unlabelled training examples, resulting in a clear boost in scores. With
800 labelled examples, the accuracy increases from 73.5% to 82.0%, highlighting
the effectiveness of PointMixup in a semi-supervised setting.

Few-shot learning. Few-shot classification aims to learn a classifier to rec-
ognize unseen classes during training with limited examples. We follow [28,
18, 20, 6, 21] to regard few-shot learning a typical meta-learning method, which
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Table 4: Evaluating PointMixup in the context of semi-supervised (left)
and few-shot learning (right). When examples are scarce, as is the case for
both settings, using our approach provides a boost to the scores.

Semi-supervised classification

Supervised [27]+PointMixup

400 examples 69.4 76.7
600 examples 72.6 80.8
800 examples 73.5 82.0

Few-shot classification

[20] + PointMixup

5-way 1-shot 72.3 77.2
5-way 3-shot 80.2 82.2
5-way 5-shot 84.2 85.9

learns how to learn from limited labeled data through training from a collection
of tasks, i.e., episodes. In an N -way K-shot setting, in each task, N classes are
selected and K examples for each class are given as a support set, and the query
set consists of the examples to be predicted. We perform few-shot classification
on ModelNet40, from which we select 20 classes for training, 10 for validation,
and 10 for testing. We utilize PointMixup within ProtoNet [20] by constructing
mixed examples from the support set and update the model with the mixed
examples before making predictions on the query set. We refer to the supple-
mentary material for the details of our method and the settings. The results in
Table 4 on the right show that incorporating our data augmentation provides a
boost in scores, especially in the one-shot setting, where the accuracy increases
from 72.3% to 77.2%.

5 Conclusion

This work proposes PointMixup for data augmentation on point clouds. Given
the lack of data augmentation by interpolation on point clouds, we start by
defining it as a shortest path linear interpolation. We show how to obtain Point-
Mixup between two point clouds by means of an optimal assignment interpola-
tion between their point sets. As such, we arrive at a Mixup for point clouds,
or latent point cloud representations in the sense of Manifold Mixup, that can
handle permutation invariant nature. We first prove that PointMixup abides to
our shortest path linear interpolation definition. Then, we show through various
experiments that PointMixup matters for point cloud classification. We show
that our approach outperforms baseline interpolations and regularizers. More-
over, we highlight increased robustness to noise and geometric transformations,
as well as its general applicability to point-based networks and datasets. Lastly,
we show the potential of our approach in both semi-supervised and few-shot set-
tings. The generic nature of PointMixup allows for a comprehensive embedding
in point cloud classification.
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A Proofs for the properties of PointMixup interpolation

We provide detailed proofs for the shortest path property, the assignment in-
variance property and the linearity, stated in Section 3.4.

Proof for the shortest path property We denote xi ∈ S1 and yj ∈ S2

are the points in S1 and S2, then the generated S
(λ)
OA = {ui}Ni=1 and ui =

(1− λ) · xi + λ · yφ∗(i), where φ∗ is the optimal assignment from S1 to S2.
Then we suppose an identical one-to-one mapping φI such that φI(i) = i.

Then by definition of the EMD as the minimum transportation distance, so

dEMD(S1, S
(λ)
OA) ≤ 1

N

∑
i

‖xi − uφI(i)‖2, (1)

where the right term of (1) is the transportation distance under identical assign-
ment φI . Since 1

N

∑
i ‖xi − uφI(i)‖2 = 1

N

∑
i ‖xi − ((1− λ) · xi + λ · yφ∗(i))‖2 =

λ 1
N

∑
i ‖xi − yφ∗(i)‖2 = λ · dEMD(S1, S2). Thus,

dEMD(S1, S
(λ)
OA) ≤ λ · dEMD(S1, S2). (2)

Similarly as in (1) and (2), the following inequality (3) can be derived by assign-

ing the correspondence from S
(λ)
OA to S2 with φ∗:

dEMD(S
(λ)
OA, S2) ≤ (1− λ) · dEMD(S1, S2). (3)

With (2) and (3),

dEMD(S1, S
(λ)
OA) + dEMD(S2, S

(λ)
OA) ≤ dEMD(S1, S2). (4)

However, as the triangle inequality holds for the EMD, i.e.

dEMD(S1, S
(λ)
OA) + dEMD(S2, S

(λ)
OA) ≥ dEMD(S1, S2), (5)

? Equal contribution.
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Then by summarizing (4) and (5), dEMD(S1, S
(λ)
OA) + dEMD(S2, S

(λ)
OA)

= dEMD(S1, S2) is proved. ut

Proof for the assignment invariance property We introduce two inter-
mediate arguments. We begin with proving the first intermediate argument: φI
is the optimal assignment from S1 to S

(λ1)
OA . Similarly as in (2) ,(3) and (5) from

the proof for Proposition 1, in order to allow all the three inequalities, the equal
signs need to be taken for all of the three inequalities. Consider that the equal
sign being taken for (2) is equivalent to the the equal sign being taken for (1),
then,

dEMD(S1, S
(λ1)
OA ) =

1

N

∑
i

‖xi − uφI(i)‖2, (6)

which in turn means that φI is the optimal assignment from S1 to S
(λ1)
OA by the

definition of the EMD. So the first intermediate argument is proved.
The second intermediate argument is that φ∗ is the optimal assignment from

S
(λ1)
OA to S2. This argument can be proved samely as the first one. Say the equal

sign being taken for (3) is equivalent to that

dEMD(S
(λ1)
OA , S2) =

1

N

∑
i

‖ui − yφ∗(i)‖2. (7)

Thus, φ∗ is the optimal assignment from S
(λ1)
OA to S2 is proved.

Then, with the two intermediate arguments, we can reformalize the setup to

regard that S
(λ2)
OA is interpolated from source pairs S

(λ1)
OA and S2 with the mix

ratio λ2−λ1

1−λ1
, because the optimal assignment from S

(λ1)
OA to S2 is the same as the

optimal assignment from S1 to S2. This argument then becomes an isomorphic
with respect to the first intermediate argument. Then we prove that φI is the

optimal assignment from S
(λ1)
OA to S

(λ2)
OA similarly as the proof for the first inter-

mediate argument. ut

Proof for linearity We have shown that φI is optimal assignment between

S
(λ1)
OA = {uk} = {(1 − λ1) · xk + λ1 · yφ∗(k)} and S

(λ2)
OA = {vl} = {(1 − λ2) ·

xl +λ2 · yφ∗(l)}. Thus, dEMD(S
(λ1)
OA , S

(λ2)
OA ) = 1

N

∑
k ‖((1−λ1) · xk +λ1 · yφ∗(k))−

((1− λ2) · xφI(k) + λ2 · yφ∗(φI(k)))‖2 = 1
N

∑
k ‖(λ2 − λ1)(xk − yφ∗(k))‖2 = (λ2 −

λ1) 1
N

∑
k ‖(xk − yφ∗(k))‖2 = (λ2 − λ1) · dEMD(S1, S2). ut

B Few-shot learning with PointMixUp

We test if our PointMixup helps point cloud few-shot classification task, where a
classifier must generalize to new classes not seen in the training set, given only a
small number of examples of each new class. We take ProtoNet [3] as the baseline
method for few-shot learning, and PointNet++ [2] is the feature extractor hθ.
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Episodic learning setup ProtoNet takes the episodic training for few-shot
learning, where an episode is designed to mimic the few-shot task by subsampling
classes as well as data. A NC-way NS-shot setting is defined as that in each
episode, data from NC classes are sampled and NS examples for each class is
labelled. In the ith episode of training, the dataset Di consists of the training
example and class pairs fromNC classes sampled from all training classes. Denote
DSi ⊂ Di is the support set which consists of labelled data from NC classes with

NS examples, and DQi = Di\DSi is the query set which consists of unlabelled
examples to be predicted.

Baseline method for few-shot classification: ProtoNet [3] In each episode
Di, ProtoNet computes a prototype as the mean of embedded support examples
z̄c for each class c, from all examples from the support set DSi . The latent em-
bedding is from the network hθ (for which we use PointNet++ [2] without the

last fully-connected layer). Then each example S from the query set DQi is clas-
sified into a label distribution by a softmax over (negative) distance to the class
prototypes:

p(ŷ = c|S) =
exp(−d(S, z̄c))∑
c′ exp(−d(S, z̄c′))

,

Algorithm 1 Episodic training of ProtoNet with PointMixUp. From

line 3 to line 8 is where PointMixUp takes a role in addition to the ProtoNet baseline.

Testing stage is similar as training stage, but without line 13 and line 14 which learn

new weight from query examples.

Require: Set of sampled episodes {Di}, where Di = DSi ∪ DQi denoting the support
and query sets

Require: hθ: feature extractor network: input → latent embedding
1: randomly initialize θ
2: for episode i do
3: for class c do
4: calculate prototype z̄c from DSi , with hθ.
5: end for
6: Construct Mixup samples Dmix

i from support set DSi .
7: Predict the label distributions for mixed examples in Dmix

i , with distance to z̄c.
8: Update θ with prediction from mixed examples, as episode-specific weights θi.
9: for class c do

10: calculate new prototype z̄
(θi)
c from DSi , with hθi

11: end for
12: Predict the label distributions for query examples in DQi , with distance to z̄

(θi)
c .

13: Update θi with prediction from query examples.
14: θ ← θi
15: end for
16: return θ
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where d(·, ·) is the Eudlidean distance in the embedding space. In training stage,
the weights θ for the feature extractor hθ is updated by the cross-entropy loss
for the predicted query label distribution and the ground truth.

Few-shot point cloud classification with PointMixup We use PointMixup
to learn a better embedding space for each episode. Instead of using the hθ
directly to predict examples from query set, we learn a episode-specific weight
θi from the mixed data, and the query examples are predicted by hθi . We use
PointMixup to construct a mixed set Dmix

i from the labelled support set DSi ,
which consists of examples from

(
Nc

2

)
class pairs and for each class pairs Ns

mixed examples are constructed from randomly sampling support examples.
Then the weight θ is updated as θi from backprop the loss from the prediction
of mixed examples from Dmix

i . After that, the label of query examples from DQi
is then predicted with the updated feature extractor hθi . See Algorithm 1 for an
illustration of the learning scheme.

C Further Discussion on Interpolation Variants

The proposed PointMixUp adopts Optimal Assignment (OA) interpolation for
point cloud because of its advantages in theory and in practice. To compare
Optimal Assignment interpolation with the two alternative strategies, Random
Assignment (RA) interpolation and Point Sampling (PS) interpolation, the pro-
posed PointMixUp with OA interpolation is the best performing strategy, fol-
lowed by PS interpolation. RA interpolation, which has a non-shortest path
definition of interpolation, does not perform well.

Here we extend the discussion on the two alternative interpolation strategies,
through which we analyze the possible advantages and limitations under certain
conditions, which in turn validates our choice of applying Optimal Assignment
interpolation for PointMixup.

Random Assignment interpolation From our shortest path interpolation
hypothesis for Mixup, the inferiority of RA interpolation comes from that it
does not obey the shortest path interpolation rule, so that the mixed point clouds
from different source examples can easily entangle with each other. From Fig.
3 in the main paper, the Random assignment interpolation produces chaotic
mixed examples which can hardly been recognized with the feature from the
source class point clouds. Thus, RA interpolation fails especially under heavy
Mixup (the value of λ is large).

Point Sampling interpolation: yet another shortest path interpolation
Point Sampling interpolation performs relatively well in PointNet++ and some-
times comparable with the Optimal Assignment interpolation. From Fig. 3 in
the main paper, the PS interpolation produces mixed examples which can be
recognized which classes of source data it comes from.
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Reviewing the shortest path interpolation hypothesis, We argue that when
the number of points N is large enough, or say N →∞, Point Sampling interpo-
lation also (approximately) defines a shortest path on the metric space (S, dEMD)
(Note that given the initial and the final points, the shortest path in (S, dEMD)
is not unique). This is a bit counter-intuitive, but reasonable.

We show the shortest path property. Recall that point sampling interpolation
randomly draws without replacement of points from each set are made according

to the sampling frequency λ: S
(λ)
PS = S

(1−λ)
1 ∪S(λ)

2 , where S
(λ)
2 denotes a randomly

sampled subset of S2, with bλNc elements. (b·c is the floor function.) And similar

for S
(1−λ)
1 with N − bλNc elements, such that S

(λ)
PS contains exactly N points.

Imagine that a subset S
(1−λ)
1 with a number of N − bλNc points in S

(λ)
PS are

identical with that in S1. For dEMD(S
(λ)
PS , S1), the optimal assignment will return

these identical points as matched pairs, thus they contribute zero to the overall
EMD distance. Thus,

dEMD(S
(λ)
PS , S1) =

N − bλNc
N

dEMD(S
(λ)
PS \ S

(1−λ)
1 , S1 \ S(1−λ)

1 )

=
N − bλNc

N
dEMD(S

(λ)
2 , S1 \ S(1−λ)

1 )

≈ N − bλNc
N

dEMD(S2, S1)

≈ (1− λ) · dEMD(S1, S2),

from which dEMD(S
(λ)
2 , S1 \ S(1−λ)

1 ) ≈ dEMD(S2, S1) is because that S1 and

S1 \ S(1−λ)
1 are the point clouds representing the same shape but with different

density, and the same with S2 and S
(λ)
2 .

Similarly, dEMD(S
(λ)
PS , S2) ≈ λ · dEMD(S1, S2), and thus dEMD(S

(λ)
PS , S1) +

dEMD(S
(λ)
PS , S2) = dEMD(S1, S2), which in turn proves the shortest path property.

We note that the linearity of PS interpolation w.r.t. dEMD also holds and the
proof can be derived similarly. Thus, although strictly not an ideally continuous
interpolation path, PS interpolation is (appoximately) a shortest path linear
interpolation in (S, dEMD), which explains its good performance.

Point Sampling interpolation: limitations The limitation of PS interpola-
tion is from that the mix ratio λ controls change of local density distribution,
but the underlying shape does not vary with λ. So, as shown in Table 1, PS
interpolation fails with PointNet [1], which is ideally invariant to the point den-
sity, because a max pooling operation aggregates the information from all the
points.

A question which may come with PS interpolation is that how it performs
relatively well with PointNet++, which is also designed to be density-invariant.
This is due to the sampling and grouping stage. PointNet++ takes same op-
eration as PointNet in learning features, but in order to be hierarchical, the
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Table 1: Different interpolation strategies on PointNet [1] Following the
original paper [1] we test on unaligned setting. PS interpolation fails with Point-
Net as a density-invariant model. The numbers are accuracy in percentage.

Baseline PointMixup (OA) RA PS

89.2 89.9 88.2 88.7

sampling and grouping stage, especially the farthest point sampling (fps) op-
eration is not invariant to local density changes such that it samples different
groups of farthest points, resulting in different latent point cloud feature repre-
sentations. Thus, PointNet++ is invariant to global density but not invariant to
local density differences, which makes PS interpolation as a working strategy for
PointNet++. However, we may still expect that the performance of Mixup based
on PS interpolation is limited, because it does not work well with PointNet as a
basic component in PointNet++.

By contrast, the proposed PointMixup with OA interpolation strategy is not
limited by the point density invariance. As a well established interpolation, OA
interpolation smoothly morphes the underlying shape. So we claim that OA
interpolation is a more generalizable strategy.
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