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Abstract. The Microsoft SenseCam is a small lightweight wearable camera 

used to passively capture photos and other sensor readings from a user's day-to-

day activities. It can capture up to 3,000 images per day, equating to almost 1 

million images per year. It is used to aid memory by creating a personal 

multimedia lifelog, or visual recording of the wearer’s life. However the sheer 

volume of image data captured within a visual lifelog creates a number of 

challenges, particularly for locating relevant content. Within this work, we 

explore the applicability of semantic concept detection, a method often used 

within video retrieval, on the novel domain of visual lifelogs. A concept 

detector models the correspondence between low-level visual features and high-

level semantic concepts (such as indoors, outdoors, people, buildings, etc.) 

using supervised machine learning. By doing so it determines the probability of 

a concept's presence. We apply detection of 27 everyday semantic concepts on 

a lifelog collection composed of 257,518 SenseCam images from 5 users. The 

results were then evaluated on a subset of 95,907 images, to determine the 

precision for detection of each semantic concept and to draw some interesting 

inferences on the lifestyles of those 5 users. We additionally present future 

applications of concept detection within the domain of lifelogging. 

Keywords: Microsoft SenseCam, lifelog, passive photos, concept detection, 

supervised learning 

1   Introduction 

Recording of personal life experiences through digital technology is a phenomenon 

we are increasingly familiar with: music players, such as iTunes, remember the music 

we listen to frequently; our web activity is recorded in web browsers’ “History”; and 

we capture important moments in our life-time through photos and video [1]. This 

concept of digitally capturing our memories is known as lifelogging. Lifelogging and 

memory capture was originally envisaged to fulfill at least part of Vannevar Bush’s 

1945 MEMEX vision.  Bush describes his MEMEX as a collection in which a person 

could store all of their life experience information including photographs, documents 



and communications “and which is mechanized so that it may be consulted with 

exceeding speed and flexibility.” [3].  

A visual lifelogging device, such as the SenseCam, will capture approximately 1 

million images per year. The sheer volume of photos collected, and the rate at which a 

collection can grow, pose significant challenges for the access, management, and 

utility of such a lifelog.  However, inroads to resolving some of the concerns relating 

to these issues have already been made.  For example, in prior work we proposed the 

aggregation of individual images within a visual lifelog into higher level discrete 

‘events’ which represent single activities in a user’s day [8].  Furthermore, work has 

been carried out to investigate how best to select a single representative keyframe 

image which best summarises a given event [7]. Lee et. al. have constructed an event-

oriented browser which enables a user to browse each day in their collection through 

a calendar controlled interface [19]. This interface allows the ‘gisting’ or recap of an 

entire day’s activities by presenting a visual summary of the day. The benefit of such 

daily summaries has been highlighted in the results of a preliminary study carried out 

between Microsoft Research and Addenbrooke’s Hospital, Cambridge, U.K. where 

visual lifelog recordings notably improved subjects’ recall of memories [15].   

A fundamental requirement outlined in Bush’s MEMEX [3] is that we must 

provide on-demand, rapid and easy access to the memories and experiences of interest 

and to achieve this we must be able to support high quality retrieval. While many 

steps have been taken towards managing such an ever-growing collection [7,8,20], we 

are still far from achieving Bush’s original vision. This is mainly due to the fact that 

we cannot yet provide rapid, flexible access to content of interest from the collection. 

The most obvious form of content retrieval is to offer refinement of the lifelog 

collection based on temporal information. Retrieval may also be enabled based on the 

low-level visual features of a query image. However, in order for such a search to be 

effective the user must provide a visual example of the content they seek to retrieve 

and there may be times when a user will not possess such an example, or that it may 

be buried deep within the collection. Augmentation and annotation of the collection 

with sources of context metadata is another method by which visual lifelogs may be 

made searchable. Using sources of context such as location or weather conditions has 

been demonstrated to be effective in this regard [4,10]. There are, however, 

limitations to these approaches as well, most importantly any portion of the collection 

without associated context metadata would not be searchable. Moreover, while 

information derived from sensors such as Bluetooth and GPS [4] may cover the ‘who’ 

and the ‘where’ of events in an individual’s lifelog, however, they do not allow for the 

retrieval of relevant content based on the ‘what’ of an event. 

  An understanding of the ‘what’ or the semantics of an event would be invaluable 

within the search process and would empower a user to rapidly locate relevant 

content. Typically, such searching is enabled in image tools like Flickr through 

manual user contributed annotations or ‘tags’, which are then used to retrieve visual 

content. Despite being effective for retrieval, such a manual process could not be 

practical within the domain of lifelogging, since it would be far too time and resource 

intensive given the volume of the collection and the rate at which it grows. Therefore 

we should explore methods for automatic annotation of visual lifelog collections. 

One such method is concept detection, an often employed approach in video 

retrieval [22,24,27], which aims to describe visual content with confidence values 



indicating the presence or absence of object and scene categories. Although it is hard 

to bridge the gap between low-level features that one can extract from visual data and 

the high-level conceptual interpretation a user gives to this data, the video retrieval 

field has made substantial progress by moving from specific single concept detection 

methods to generic approaches. Such generic concept detection approaches are 

achieved by fusion of color-, texture-, and shape-invariant features [11,12,14,25], 

combined with supervised machine learning using support vector machines [5,26]. 

The emphasis on generic indexing by learning has opened up the possibility of 

moving to larger concept detector sets [16,23,28]. Unfortunately these concept 

detector sets are optimized for the (broadcast) video domain only, and their 

applicability to other domains such as visual lifelog collections remains as of yet 

unclear.  

Visual lifelog data, and in particular Microsoft SenseCam data – the source for our 

investigation - is markedly different from typical video or photographic data and as 

such presents a significantly more challenging domain for visual analysis. SenseCam 

images tend to be of low quality owing to: their lower visual resolution; their use of a 

fisheye lens which distorts the image somewhat but increases the field of view; and a 

lack of flash resulting in many images being much darker than desired for optimal 

visual analysis. Also, almost half of the images are generally found to contain non-

desirable artifacts such as grain, noise, blurring or light saturation [13]. Thus our 

investigation into the precision and reliability of semantic concept detection methods 

will provide important insights into their application for visual lifelogs.     

The rest of this paper is organised as follows: Section 2 details how we apply 

concept detection to images captured by the SenseCam lifelogging device; section 3 

quantitatively describes how accurate our model is in detecting concepts; section 4 

provides interesting inferences on the lifestyles of our users using the detected 

concepts; while sections 5 and 6 finally summarise this work and detail many 

interesting future endeavours to be investigated. 

2. Concept Detection Requirements in the Visual Lifelog Domain 

The major requirements for semantic concept detection on visual lifelogs are as 

follows: 1) Identification of Everyday Concepts; 2) Reliable and Accurate Detection; 

and 3) Identification of Positive and Negative Examples. We now discuss how we 

followed these steps with respect to lifelog images captured by a SenseCam. 

 

Use Case: Concept Detection in SenseCam Images 

To study the applicability of concept detection in the lifelog domain we make use of a 

device known as the SenseCam. Microsoft Research in Cambridge, UK, have 

developed the SenseCam as a small wearable device that passively captures a person's 

day-to-day activities as a series of photographs and readings from in-built sensors 

[15]. It is typically hung from a lanyard around the neck and, so is oriented towards 

the majority of activities which the user is engaged in. Anything in the view of the 

wearer can be captured by the SenseCam because of its fisheye lens. At a minimum 

the SenseCam will automatically take a new image approximately every 50 seconds, 



but sudden changes in the environment of the wearer, detected by onboard sensors, 

can trigger more frequent photo capture. The SenseCam can take an average of 3,000 

images in a typical day and, as a result, a wearer can very quickly build large and rich 

photo collections. Already within a year, the lifelog photoset will grow to 

approximately 1 million images! 

Fig. 1. The Microsoft SenseCam (Inset: right as worn by a user) 

 

2.1 Collection Overview 

In order to appropriately evaluate concept detection we organised the collection of 

a large and diverse dataset of 257,518 SenseCam images gathered by five individual 

users. In order to further ensure diversity, there was no overlap between the periods 

captured within each user’s dataset. A breakdown of the collection is illustrated in 

Table 1. It is worth noting that not all collections featured the same surroundings. 

Often collections were subject to large changes in location, behaviour, and 

environments. This allowed us to more reliably determine the robustness of concept 

detection in this domain. 

 

User Total Images Number of Concepts Annotated Days Covered 

1 79,595 2,180 35 

2 76,023 9,436 48 

3 42,700 27,223 21 

4 40,715 28,023 25 

5 18,485 11,408 8 

Table 1.  An overview of the image collection used. 

2.2 Determining LifeLog Concepts 

Current approaches to semantic concept detection are based on a set of positive and 

a set of negative labeled image examples by which a classifier system can be trained 

(see section 2.3).  Consequently, as part of this investigation we identify the concepts 

within the collection for which a set of training examples would be collected. In order 

to determine the everyday concepts within the collection, a subset of each user’s 

collection was visually inspected by playing the images sequentially at highly 

accelerated speed. A list of concepts previously used in video retrieval [22,23] and 

agreed upon as applicable to a SenseCam collection were used as a starting point. As 

 



a new identifiable ‘concept’ was uncovered within the collection it was added to this 

list. Each observed repetition of the concept gave it additional weight and ranked it 

more highly for inclusion. Over 150 common concepts were identified in this process. 

It was decided that the most representative (i.e. everyday) concepts should be selected 

and as such these were then narrowed to just 27 core concepts through iterative 

review and refinement.  Criteria for this refinement included the generalisability of 

the concept across collections and users.  For example, the concepts ‘mountain’ and 

‘snow’ occurred in User 1’s collection frequently but could not be considered as an 

Concept / User 1 2 3 4 5 All 

Total to Annotate 16111 14787 8593 8208 3697 51396 

Indoors 1093 1439 6790 6485 3480 19287 

Hands 1 17 4727 3502 2402 10649 

Screen (computer/laptop) 7 1101 4699 2628 2166 10601 

Office 7 78 4759 2603 336 7783 

People 0 1775 573 3396 889 6633 

Outdoors 250 915 1248 812 67 3292 

Faces 0 553 101 1702 662 3018 

Meeting 0 808 0 1233 355 2396 

Inside of vehicle, not 

driving (airplane, car, bus) 257 1326 420 223 0 2226 

Food (eating) 0 795 349 870 129 2143 

Buildings 140 49 981 621 62 1853 

Sky 0 202 720 525 66 1513 

Road 125 0 231 648 4 1008 

Tree 24 44 378 469 42 957 

Newspaper/Book (reading) 0 85 13 520 309 927 

Vegetation 0 3 255 468 52 778 

Door 28 0 279 128 144 579 

Vehicles (external view) 33 0 322 121 4 480 

Grass 0 122 99 190 33 444 

Holding a cup/glass 0 0 21 353 44 418 

Giving Presentation / 

Teaching 0 43 0 309 0 352 

Holding a mobile phone 0 4 54 28 147 233 

Shopping 0 75 102 48 3 228 

Steering wheel (driving) 208 0 0 0 0 208 

Toilet/Bathroom 6 0 75 93 0 174 

Staircase 0 2 26 48 11 87 

View of Horizon 1 0 1 0 1 3 

Table 2.  An outline of the 27 concepts and the no. of positive examples per concept and per user. 

 



everyday concept as it was not present in the remaining collections. As such the 27 

concepts represent a set of everyday core concepts most likely to be collection 

independent, which should consequently be robust with respect to the user and 

setting.  These core concepts are outlined in Figure 2 using visual examples from the 

collection. Given that some concepts are related (e.g. it is logical to expect that 

‘buildings’ and ‘outdoors’ would co-occur), it is important to note that each image 

may contain multiple (often semantically related) concepts. 

A large-scale manual annotation activity was undertaken to provide the required 

positive and negative labeled image examples. As annotating the entire collection was 

impractical and given that SenseCam images tend to be temporally consistent the 

collection was skimmed by taking every 5th image. Collection owners annotated their 

own SenseCam images for the presence of each of the concepts. As by their nature 

lifelog images are highly personal, it is important for privacy reasons that it is only 

the owner of the lifelog images who labels his or her images. Therefore, collection 

owners annotated their own SenseCam images for each concept. This also provided 

the opportunity for them to remove any portion of their collection they did not wish to 

have included as part of this study. All users covered their entire skimmed collection 

with the exception of User 1, who only partially completed the annotation process on 

a subset of his collection. The number of positive examples for each concept and for 

each user is presented in Table 2.   

2.3   Concept Detection Process 

Our everyday concept detection process is composed of three stages: 1) supervised 

learning, 2) visual feature extraction, and 3) feature and classifier fusion, each of 

these stage uses the implementation detailed below. 

Supervised Learner: We perceive concept detection in lifelogs as a pattern 

recognition problem. Given pattern x, part of an image i, the aim is to obtain a 

probability measure, which indicates whether semantic concept !j is present in image 

i. Similar to [16,24,27,28], we use the Support Vector Machine (SVM) framework 

[26] for supervised learning of concepts. Here we use the LIBSVM implementation 

[5] with radial basis function and probabilistic output [21]. We obtain good SVM 

settings by using an iterative search on a large number of parameter combinations. 

Visual Feature Extraction: For visual feature extraction we adopt the well-known 

codebook model, see e.g. [17], which represents an image as a distribution over 

codewords. We follow [25] to build this distribution by dividing an image in several 

overlapping rectangular regions. We employ two visual feature extraction methods to 

obtain two separate codebook models, namely: 1) Wiccest features, which rely on 

natural image statistics and are therefore well suited to detect natural sceneries, and 2) 

Gabor features, which are sensitive to regular textures and color planes, and therefore 

well suited for the detection of man-made structures. Both these image features 

measure colored texture. 

Wiccest features [11] utilise natural image statistics to model texture information. 

Texture is described by the distribution of edges in a certain image region. Hence, a 

histogram of a Gaussian derivative filter is used to represent the edge statistics. It was 

shown in [12] that the complete range of image statistics in natural textures can be 

well modeled with an integrated Weibull distribution, which in turn can be 



characterised by just 2 parameters. Thus, 2 Weibull parameter values for the x-edges 

and y-edges of the three color channels yields a 12 dimensional descriptor. We 

construct a codebook model from this low-level region description by computing the 

similarity between each region and a set of 15 predefined semantic color-texture 

Figure 2.  Visual examples of each of the 27 everyday concepts as detected and validated for the 

lifelog domain.  
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patches (including e.g. sand, brick, and water), using the accumulated fraction 

between their Weibull parameters as a similarity measure [25]. We perform this 

procedure for two region segmentations, two scales, the x- and the y-derivatives, 

yielding a codebook feature vector of 120 elements we term w. 

Gabor filters may be used to measure perceptual surface texture in an image [2]. 

Specifically, Gabor filters respond to regular patterns in a given orientation on a given 

scale and frequency. In order to obtain an image region descriptor with Gabor filters 

we follow these three steps: 1) parameterise the Gabor filters, 2) incorporate color 

invariance, and 3) construct a histogram. First, the parameters of a Gabor filter consist 

of orientation, scale and frequency. We use four orientations, 0º, 45º, 90º, 135º, and 

two (scale, frequency) pairs: (2.828, 0.720), (1.414, 2.094). Second, color responses 

are measured by filtering each color channel with a Gabor filter. The W color 

invariant is obtained by normalising each Gabor filtered color channel by the intensity 

[14]. Finally, a histogram is constructed for each Gabor filtered color channel. We 

construct a codebook model from this low-level region description by again 

computing the similarity between each region and a set of 15 predefined semantic 

color-texture patches, where we use histogram intersection as the similarity measure. 

Similar to the procedure for w, this yields a codebook feature vector of 120 elements 

we term g. 

Feature and Classifier Fusion: As the visual features w and g emphasise different 

visual properties, we consider them independent. Hence, much is to be expected from 

their fusion. We employ fusion both at the feature level as well as the classifier level. 

Although the vectors w and g rely on different low-level feature spaces, their 

codebook model is defined in the same codeword space. Hence, for feature fusion we 

can concatenate the vectors w and g without the need to use normalisation or 

transformation methods. This concatenation yields feature vector f . 

For each of the feature vectors in the set {w, g, f} we learn a supervised classifier. 

Thus for a given image i and a concept !j , we obtain three probabilities, namely: 

p(!j| wi), p(!j | gi), and p(!j | fi), based on the same set of labeled examples. To 

maximize the impact of our labeled examples, we do not rely on supervised learning 

in the classifier fusion stage. Instead, we employ average fusion of classifier 

probability scores, as used in many visual concept detection methods [16,24,27,28]. 

After classifier fusion we obtain our final concept detection score, which we denote 

p(!ij). 

3 Validation of Everyday Concept Detection 

In order to validate p(!ij), we manually judged a subset of the collection. To make a 

determination of its presence we employ a thresholding technique which divides the 

collection into those considered to contain the concept and those which do not. To 

achieve this, while simultaneously selecting a threshold value for each concept, we 

use the Kapur automatic thresholding technique [18]. Since this entropy based non-

parametric method does not require any training, it can be easily applied to such a 

broad collection. We consider any images above the threshold value to be positive 

examples of that concept. Similarly, any frames below the threshold were considered 



as negative. Next, nine participants manually judged a subset of system positive and 

negative examples for each concept. In order to judge the intercoder reliability, 

consistency and accuracy of each annotator’s performance; 50 positive and 50 

negative examples per concept were randomly selected for judgment by each of the 9 

annotators. Additionally, per concept, another 150 system judged positive and 

negative frames were randomly selected and assigned to every annotator. This 

resulted in almost 1400 positive and negative unique images per concept to be judged 

by the 9 annotators (50 to be judged by all 9 plus 9x150 individual judgments). 

Concept Name 
No. Samples 

Provided 

Number of 

Judgements 

System Positive 

Accuracy 

System Negative 

Accuracy 

Indoor 19,287 3,271 82% 45% 

Sky 1,513 4,099 79% 90% 

Screen 10,601 3,761 78% 85% 

Shopping 228 3,500 75% 99% 

Office 7,783 3,436 72% 77% 

steeringWheel 208 3,936 72% 99% 

Door 579 3,512 69% 86% 

Hands 10,649 3,399 68% 68% 

Veg 778 3,336 64% 97% 

Tree 957 3,736 63% 98% 

Outdoor 3,292 3,807 62% 97% 

Face 3,018 3,452 61% 91% 

Grass 444 3,765 61% 99% 

insideVehicle 2,226 3,604 60% 93% 

Buildings 1,853 3,654 59% 98% 

Reading 927 3,420 58% 94% 

Toilet 174 3,683 58% 99% 

Stairs 87 2,927 48% 100% 

Road 1,008 3,548 47% 96% 

vehiclesExternal 480 3,851 46% 98% 

People 6,633 3,024 45% 90% 

Eating 2,143 3,530 41% 97% 

holdingPhone 233 3,570 39% 99% 

holdingCup 418 3,605 35% 99% 

Meeting 2,396 3,534 34% 94% 

presentation 352 3779 29% 99% 

viewHorizon 3 3168 23% 98% 

Table 4.  Accuracy of detection for each concept (Sorted by ‘System Positive Accuracy’). 

 



To support this judgment process a custom annotation tool was developed.  

Participants were presented with a tiled list of images and given instructions on how 

to appropriately judge them against each concept. Users simply clicked an image to 

mark it as a positive match to the provided concept. For each concept both system 

judged positive and negative images were presented in tandem and were randomly 

selected from the total pool of judgments to be made. Annotating in this fashion 

allowed a total of 95,907 judgments made across all users on 70,659 unique concept 

validation judgments (which used 58,785 unique images).  This yielded a detailed 

validation of both the images considered positive and negative for each concept.  

Each annotator provided judgments for a shared set of 100 images per concept.  

These images were then used to determine the amount of agreement in the judgments 

among the nine annotators. An understanding of this ‘intercoder reliability’ is 

important as it validates the reliability of the overall annotation process and the 

performance of the annotators in general. This allows us to ensure that the outcome of 

the validation process is wholly reliable. The intercoder reliability was determined to 

be 0.68 for all judgments completed using Fleiss’s Kappa [9]. As such the annotations 

provided by these participants are consistent and have very good inter-coder 

agreement. Examination at the concept level shows 18 of the 27 concepts had at least 

0.6 agreement which is substantial according to Landis and Koch [19]. While 

examination of individual concepts reveals some variability in inter-rater reliability 

and a number of lower than anticipated agreement for a minority of the concepts 

(k=0.64 average overall; minimum 0.37 – view of horizon; maximum 0.86 – steering 

wheel), given that the number of judgments made per annotator was extremely large, 

this may have had the affect of reducing the overall magnitude of the value. We 

believe that the agreement between the annotators is sufficiently reliable to use these 

judgments to validate the automatically detected concepts.  

3.1 Analysis of System Results 

From the 95,907 judged results, 72,143 (75%) were determined to be correctly 

classified by the system. This figure, however, includes both positive and negative 

images for a concept as determined by the system. Of all those judgments, the system 

correctly identified 57% of true positives overall. 93% of system negatives were 

correct, meaning that only 7% of true positives were missed across all the concepts on 

the entire dataset. 

Given the variation in complexity of the concepts and in the level of semantic 

knowledge they attempt to extract, it is unsurprising that there is notable differences 

in their performance and accuracy.  Furthermore, the quality, variance and number of 

training examples will impact on the performance of an individual detector and as 

such these may be factors in their differing performances. This is outlined in Table 4 

which is ordered by concept performance.  From this it is clear that the ‘indoor’ 

detector worked best, with several other concepts providing similarly high degrees of 

accuracy.  These include the “steeringWheel”, “office”, “shopping”, and “screen” 

concepts. It is also interesting to note from Table 4, that with the exception of the 

‘indoor’ concept, there are very few missed true positive examples in our large set of 



judged images. As the images were collected from 5 separate users it is interesting to 

explore the degree of variance in the performance between concepts (in terms of true 

positives). The performance ranged from 46% to 72%, but as illustrated in Fig 3, the 

deviation of results is not so large when the number of concept training samples 

provided to the system is considered (the blue dashed line at the bottom of Figure 3). 

There exists a strong correlation of 0.75 between the number of examples provided by 

each user to the system and the actual system classification results on the set of 

95,907 judged results. 

17 of the 27 concepts are at least 58% accurate in correctly identifying positive 

image examples for a given concept. Apart from the “people” concept we argue that 

the performance of the other concepts can be improved by providing more positive 

labeled image examples for each concept. We believe the concept detection results on 

SenseCam images are sufficiently reliable such that inferences on user patterns and 

behaviour may be made. 

Figure 3. Performance of all concepts on users’ collections. 

  

4 Event-Based Results Of Concept Detection Activity 

The concept detection results provided for the 219,312 images across the five 

content owners were then further analysed and investigated. There was wide variance 

in the number of images determined to be relevant from concept to concept. For 

example, 107,555 “indoor” images were detected, while just 72 images were detected 

as being of the “viewHorizon” concept. A number of concepts have a semantic 

relationship. For example, the “tree” (5,438) and “vegetation” (4,242) concepts 

closely relate to one another and as such have a similar number of positive examples. 

However, conversely, within the collection there were many more images containing 

“people” (29,794) than “face” (11,516) concepts. This is initially a little 

counterintuitive. While this may be attributed to the ‘people’ detector being relatively 

unreliable, there is another more probable explanation. Often a wearer will be for 

example on the street walking, or on a bus, and faces will not be clearly identifiable 

either as a result of people facing away from the wearer or being in the distance.  



All of the collection owners are researchers and it was also noticed that the 

concepts with the highest number of occurrences closely match that of what would be 

expected for such users, e.g. “indoor”, “screen”, “hands” (e.g. on keyboard), “office”, 

“meeting”, etc. It should be noted that the concept detectors returns results that quite 

accurately fit those concepts that our users most commonly encounter. 

As previously mentioned, using techniques as outlined in [8], a collection of 

SenseCam images can be aggregated into a higher level discrete unit known as an 

‘event’.  This has the function of reducing the approximate 3,000 images captured in 

an average day to on average 20 ‘events’, making the collection far more manageable 

for its owner.  It also has the added advantage of more closely approximating the 

‘episodic’ units in which we as humans consider our past experiences. While our 

analysis has focused on the accuracy of the concept detectors at the image level, it is, 

as such, worth considering the concepts as detected at the higher level of ‘events’.   

Figure 6. Number of "events" per concept 

 
Using this event segmentation, we identified a total of 3,030 events in the 

collection. As a concept will likely be related to the higher-level activity embodied by 

an event, the concepts were further explored at the event level. To achieve this we 

determined the concentration of the concepts within each event, e.g. a ‘working at the 

computer’ event will have a high percentage of images containing the “screen” and 

“indoor” concept. To be consistent with our prior analysis on the image-based level, 

we again made use of the Kapur thresholding approach [18] to determine whether an 

event had a sufficiently dense concentration of images of a particular concept. That is 

to say, for each concept we determined the percentage of images in an event that must 

contain that concept, in order for that event to be considered to represent the concept. 

“Building events”, for example, should have at least 28% of their images identified as 

being “building”, while “indoor” events should have at least 48% of images with the 

“indoor” concept, etc.  It is evident from observation of Fig. 6, the event and image 

level are very similar in their distribution of concepts. As expected the “indoor”, 

“screen”, and “office” concepts are still very common when they are considered in 



terms of events. Likewise, there is a very small sample of events that are under the 

concept types of “stairs”, “viewHorizon”, “holdingPhone”, etc. 

It is particularly interesting to consider, as illustrated by Fig. 7, the number of 

events each user had (relative to the size of their collection) for each concept type. To 

explain further, for user 1 the “steeringWheel” concept occurred over 350% more 

frequently than the median of all the other users. The median value is the x-axis, i.e. 

0% different to the median! As such, this graph gives an outline of the differing 

lifestyles of the users. 

Figure 7. Deviation of user examples to the median (per concept) 

 
 

For user 1 it is interesting to observe that he has much more “steeringWheel” and 

“insideVehicle” events than the other users. This is indeed to be expected given that 

this user is the only one of our collectors who regularly drove a car. In fact in 

providing the initial set of 208 positive examples of this concept, user 1 was 

responsible for all of these images.   

For user 2 it is noticeable that there are relatively many more “eating” events. An 

explanation for this is that this user wore the SenseCam to quite a few conferences, 

which included quite a few meals. Also this user was generally quite diligent in 

wearing his SenseCam for breakfast and supper. It is interesting to note that this user 

did not provide the most samples for this concept detector to train on initially. 

For user 3 there were many more “vehiclesExternal” events than for the other 

users. We attribute this to the fact that this user provided 67% of the samples for the 

concept detector to train on. While with user number 4, it is quite evident that he has 

many more “reading” events. An explanation is that this researcher is very diligent in 

terms of reading his literature, and is well known for this trait. 



User number 5 seemingly had an unusually high number of “holdingPhone” 

events. We explain this by the fact that this user was conducting experiments with his 

mobile phone at the time of capturing these SenseCam images. Due to the nature of 

the experiment he was additionally capturing surrogate image data using the mobile 

phone’s camera and as such was carrying the phone throughout the data collection 

period. As a result many of his events (relative to the other users) were annotated as 

being examples of containing the “holdingPhone” concept. Also this user provided 

63% of the samples for this particular concept to train on. 

5 Future Work 

This study was designed to investigate the feasibility of applying automatic 

concept detection methods in the domain of visual lifelogs. With the reliability of 

such techniques now validated, a number of explorations still remain.   

First, there is a great deal of scope to enhance the robustness of such approaches.  

For the most part, frames which compose an event tend to be temporally consistent in 

their visual properties and in the concepts they contain.  There is potential to leverage 

this property to further validate the presence of a concept. In addition to the photos 

the SenseCam captures, it also continually records the readings from its onboard 

sensors (light, temperature, accelerometer). The measurements taken from these 

sensors could be useful to augment and enhance the detection of the concepts from 

visual features or to detect wholly new ‘activity-centric’ concepts as in [6]. Other 

contextual sources such as Bluetooth and GPS could also be used in augmentation [4]. 

Concept based retrieval has been extremely effective in the domain of digital video 

[24]. As such retrieval using automatically detected concepts within visual lifelogs 

should be explored. The performance and utility of such concept-based retrieval 

approaches should be compared with other methods such as using social context [4]. 

Finally, exploration into semi-automatic concept annotation of a collection could 

be achieved through active learning. This would offer the ability to create and train 

new concept detectors as users explore and annotate their collections. By enabling 

efficient automatic annotation of new content, while providing flexibility to users to 

personalise and extend the set of concepts, further utility would be added to lifelogs. 

6 Conclusions 

In order to fulfill Bush’s MEMEX vision we must seek to offer rapid and flexible 

access to the contents of a visual, multimedia lifelog. However, as such collections 

are extremely voluminous and ever-growing, this is particularly challenging.  Manual 

browsing or annotation of the collection to enable retrieval is impractical and we must 

seek automatic methods to provide reliable annotations to the contents of a visual 

lifelog.  We have documented the process of applying automatic detectors for 27 

everyday semantic concepts to a large collection of SenseCam images, and rigorously 

validated the outcomes. Nine annotators manually judged the accuracy of the output 

for these 27 concepts on a subset of 95,000 lifelog images spanning five users. We 



found that while the concepts’ accuracy is varied, depending on the complexity and 

level of semantics the detector tried to extract from an image, they are largely reliable 

and offer on average a precision of 57% for positive matches and 93% for negative 

matches within such a collection.  

Furthermore, using the output of the concept detection process, we have been able 

to identify trends and make inferences into the lifestyles of our 5 users. These 

inferences were based on the system judgments made for the 27 concepts on an 

extended collection of almost 220,000 images. By intelligently correlating semantic 

concepts with previously segmented events or ‘activities’, we have been able to 

determine the occurrence of a concept in the users’ activities e.g. user 2 has 52 eating 

events. We have determined through qualitative means that this approach is promising 

for the identification of concept patterns which occur within an individual’s visual 

lifelog and more generally the concepts of interest and importance for an individual.  

These results are particularly encouraging and suggest that automatic concept 

detection methods translate well to the novel domain of visual lifelogs. Once applied 

to such a collection it offers the ability to enable a range of opportunities, with the 

most important being the efficient automatic annotation and retrieval within such a 

voluminous collection.   
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