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Abstract

This year the UvA-MediaMill team participated in the Feature Extraction and Search Task.
We developed a generic approach for semantic concept classi�cation using the semantic value
chain. The semantic value chain extracts concepts from video documents based on three con-
secutive analysis links, named the content link, the style link, and the context link. Various
experiments within the analysis links were performed, showing amongst others the merit of pro-
cessingbeyond key frames, the value of style elements, and the importance of learning semantic
context. For all experiments a lexicon of 32 concepts was exploited, 10 of which are part of the
Feature Extraction Task. Top three system-basedranking in 8 out of the 10 benchmark concepts
indicates that our approach is very promising. Apart from this, the lexicon of 32 conceptsproved
very useful in an interactiv e search scenario with our semantic video search engine, where we
obtained the highest mean averageprecision of all participan ts.

1 In tro duction

Technologicaldevelopments in a wide rangeof disciplinesare facilitating the accessto largemultimedia
repositories at a semantic level. Sophisticated detection methods for speci�c semantic conceptsexist.
However, becausethe enormous amount of possible concepts in video documents, research should
concentrate on genericmethods for concept detection, seefor example [1, 5, 19].

Although substantial progresshas been achieved, the semantic gap still hampers commercial ex-
ploitation of concept detection methods. In [16], similarit y, learning, and interaction are identi�ed
as key techniques that aid in bringing semantics to the user. Thus, given the semantic gap, an ideal
semantic video retrieval system should be able to learn a large set of conceptsfor initial search, and
usesimilarit y and interaction to re�ne results to an acceptablelevel.

In this contribution we propose the semantic value chain, a novel method for generic semantic
concept detection. We developed detectors for a lexicon of 32 concepts that allow for query by
concept. Furthermore, we explored the combination of query by concept, query by similarit y, and
interaction into an integrated semantic video search engine. To demonstrate the e�ectiv enessof our
approach, both the semantic value chain and interactive search experiments are evaluated within the
2004TRECVID video retrieval benchmark.

The organization of this paper is as follows. First, we discussthe semantic lexicon used in our
system. Then we proceedin Section 3 with the description of the semantic value chain. In Section 4
we elaborate on our semantic video search engine. Benchmark results are discussedin Section 5.

2 Semantic Lexicon

A priori we de�ne a lexicon of 32 semantic concepts. Concepts are chosen based on the indices
described in [18], previous TRECVID feature extraction tasks, anticipated positive in
uence on the
result of the 10 benchmark concepts, as well as being relevant for general search. For all concepts
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Figure 1: The semantic value chain.

considereda ground truth is annotated. The ground truth is basedon a cleanedversionof the common
annotation e�ort of the TRECVID 2003 development set [9], the evaluation results of the 2003 test
set provided by NIST, and additional annotations of the TRECVID 2004 development set. All our
submitted runs can thus be consideredto be of type B. The following concepts form the semantic
lexicon:

� f airplane take o�, American football, animal, baseball, basketscored, beach, bicycle, Bil l Clinton,
boat, building, car, cartoon, �nancial newsanchor, golf, graphics, ice hockey,MadeleineAlbright,
news anchor, news subject monologue, outdoor, overlayed text, people, people walking, physical
violence, road, soccer, sporting event, stock quotes, studio setting, train, vegetation, weather
newsg;

Together with the video data, the annotated lexicon forms the input for the semantic value chain.

3 Semantic Value Chain Analysis

For each semantic concept in the lexicon a tailored approach could be developed, however we strive
for a generic method. To arrive at such a generic approach for concept detection in video, we view
semantic video analysis as an inverted authoring process[18]. To expressa semantic intention an
author usesstyle elements. In [19] we identi�ed four style elements, namely: layout, content, capture,
and concept context, that aid in generic extraction of semantics from produced video. It was found
that additional analysismethods for content and conceptcontext have the largest potential to improve
semantic index results. In this contribution we thereforeproposethe semantic valuechain. The output
of each link in the chain forms the input for the next link, in the processenriching the semantics.
The semantic value chain extracts conceptsfrom video basedon three analysis links, i.e. the content
link, the style link, and the context link. In this Section we �rst discussthe generalarchitecture used
in each link. Then we proceedwith the individual analysis links for content, style, and context. A
complete overview of the semantic value chain is given in Fig. 1.

3.1 General Link Arc hitecture

We view detection of conceptsin video as a pattern recognition problem, where the aim is to detect
a semantic concept ! basedon a pattern x. To obtain x a granularit y needsto be chosen�rst, e.g. a
camerashot segmentation. Each link in the semantic value chain has a separateanalysis method to
obtain x from a video, a shot segmentation, and an annotated lexicon. To learn the relation between
! and x we exploit supervised learning by meansof statistical pattern recognition.



Figure 2: General link architecture within the semantic value chain.

Among the large variety of supervisedmachine learning approachesavailable, the Support Vector
Machine (SVM) framework [20, 4] has proven to be a solid choice [17, 1]. The SVM is able to learn
from few examples,handle unbalanced data, and handle unknown or erroneousdetected data. An
SVM tries to �nd an optimal separating hyperplane between two classesby maximizing the margin
between those two di�eren t classes. Finding this optimal hyperplane is viewed as the solution of a
quadratic programming problem. We convert the SVM margin to a posterior probabilit y using Platt's
method [11]. Hence,probabilistic models, obtained when an SVM is trained for a semantic concept
! , result in a likelihood p(! jx) when applied to unseenpatterns from the test data.

The in
uence of SVM parameterson concept detection performanceis signi�cant [10]. To obtain
optimal parameter settings for a semantic classi�er, grid search on a large number of classi�er pa-
rameter combinations must be applied by using an independent validation set. A priori we therefore
split the TRECVID 2004development data into a non-overlapping training and validation set. The
training set D contained 85% of the development data, the validation set V contained the remaining
15%. Basedon the broadcast date a proportional number of videosare alternatingly assignedto each
set. Apart from the amount of data, this division assuresmaximum comparability for both sets. The
prede�ned training and validation set are usedin combination with 3-fold crossvalidation to optimize
concept detection performance.

Each analysis link in the semantic value chain exploits feature extraction to obtain pattern x from
the data. Then, it usesa supervised learning module to learn an optimal model for all concepts in
the lexicon. This is illustrated in the overview of our general link architecture in Fig. 2.

3.2 Con ten t Link

In the content link we view of video from the data perspective. In general, three data streams exist
in video, i.e. the auditory, textual, and visual modalit y. For this years benchmark the content link
exploits text and visual features.

3.2.1 Visual Analysis

We analyze the visual modalit y at the image level. First, we remove the border of each frame,
including the spaceoccupied by a possible ticker tape. Then, we analyze 1 out of every 15 frames
to limit the dependencyof chosenkey frames. In those frames, we aim for weak segmentation, i.e.
a segmentation of an image into internally homogenousregions basedon someset of visual feature
detectors [16]. Invariance was identi�ed in [16] as a crucial aspect of a visual feature detector, e.g.



Figure 3: Examplesof regional visual concept segmentation.

to design features which limit the in
uence of accidental recording circumstances. As the conditions
under which semantic conceptsappear in large video repositories may vary greatly, we use invariant
visual features to arrive at weak segmentation. More speci�cally , visual features extracted by using
Gaussiancolor invariant measurements [7].

To obtain the visual features, we decorrelate RGB color values by linear transformation to the
opponent color system [7]. Smoothing the values with a Gaussian �lter suppressesacquisition and
compressionnoise. The size of the Gaussian �lters is varied to obtain a color representation that
is compatible with variations in the target object size. Normalizing each opponent color value by
its intensity suppressesglobal and local intensity variations. This results in two chromaticit y values
per color pixel. Furthermore, we obtain rotationally invariant features by taking Gaussianderivative
�lters, and combining the responsesinto two chromatic gradients. The seven measurements in total,
and each calculated over three scales,yield a 21 dimensional feature vector per pixel. This vector
servesas the input for a multi-class SVM [4] that associateseach pixel to oneof the following regional
visual concepts:

� f colored clothing, concrete, �r e, graphic blue, graphic purple, graphic yellow, grassland,greenery,
indoor sport court, red carpet, sand, skin, sky, smoke,snow/ice, tuxedo, water body, woodg;

As our visual feature analysismethod is basedon invariancewe only needa few examples,in practice
lessthen 10 per classare su�cien t. This pixel-wise classi�cation results in a weak segmentation of an
image frame in terms of regional visual concepts,seeFig. 3 for an example.

Segmenting image frames into regional visual conceptsat the granularit y of a pixel is computa-
tionally intensive. Especially, if you aim to analyze as many frames as possible. Hence,we have to
solve a performanceproblem. For the processingof the visual modalit y in the content link we have
therefore applied the Parallel-Horus software architecture [15]. This architecture, consistingof a large
collection of low-level image processingprimitiv es, allows the programmer to write ful ly sequential
applications for e�cien t parallel execution on homogeneousclusters of machines. While we estimate
that the processingof the entire TRECVID data set would have taken over 250 days on the fastest
sequential machine available to us, application of Parallel-Horus in combination with a distributed
Beowulf cluster consistingof 200dual 1-Ghz Pentium-I I I CPUs [3] reducedthe processingtime to less
than 48 hours [15].

After segmentation of every 15th frame, the percentage of pixels associated to each of the 18
regional visual conceptsis usedas an image feature vector~i . This vector forms the input for an SVM
that associates a probabilit y p(! j~i ) to each frame for all 32 classesin the general lexicon of concepts.
We usea combination of classi�cation results for individual framesover time to generatea probabilit y
at shot level. For this purposeweevaluated four combination functions, namely: minimum, maximum,
average,and product. To optimize parameter settings, we use3-fold crossvalidation on D. We then
test the obtained optimal model for each combination function on V. We found that averaging the
results of single imageswithin a shot results in much better performancein terms of averageprecision
than an approach that relies on one key frame only.



Table 1: Semantic concept ordering based on content link analysis performance.

1. Weather news 9. People walking 17. Golf 25. Road

2. Stock quotes 10. Financial anchor 18. People 26. Beach

3. Anchor 11. Ice hockey 19. American football 27. Train

4. Overlayed text 12. Carto on 20. Outdo or 28. Madeleine Albrigh t

5. Basket scored 13. Studio setting 21. Car 29. Building

6. Graphics 14. Physical violence 22. Bill Clin ton 30. Airplane tak e o�

7. Baseball 15. Vegetation 23. News subject monologue 31. Bicycle

8. Sporting event 16. Boat 24. Animal 32. Soccer

3.2.2 Speech-based Textual Analysis

Transcribed speech obtained by the LIMSI speech detection system [6] serves as the textual input.
After stopword removal using SMART's English stoplist [12], text that falls within the boundariesof
a camerashot is associated to that shot1. Sincea semantic concept is also associated with a shot, we
learn a lexicon of words that have an association to a concept.

We comparethe text associated with each shot with the learned lexicon to construct a text vector
~t. This vector contains the frequency histogram of words that have an association to a concept.
Becausewe treat all words in the lexicon equally, ~t contains responsesto words that are likely to be
related to a semantic concept, but also words that have no obvious relation to a concept. For the
concept train for example the lexicon contains logically related words like passenger,tracks, train,
locomotive, overpass,and freight, but alsolesslikely related words, e.g. cars,world, today, and twelve.
To prevent the in
uence of domain knowledgewe apply an SVM on ~t to learn which combination of
words is important for a certain semantic concept. The SVM assignsa probabilit y p(! j~t) to each shot,
for all conceptsin the lexicon. We use3-fold crossvalidation on D to optimize parameter settings for
the learned models.

3.2.3 Submitted Runs from the Con ten t Link

Based on the sketched analysis methods we submitted two runs from the content link. Results are
submitted for a subsetof 10 semantic conceptsfrom the lexicon, that is evaluated within the bench-
mark.

The �rst run is basedon the best unimodal performanceof a semantic concepton V (BU). Except
for basket scored, all semantic conceptshad better performance for speech basedtext analysis than
for visual analysis. The secondrun usesvector fusion (VF) to integrate visual and speech basedtext
analysis. Both vectors~i and ~t serve as input for this integrated analysis method. We concatenate
the text vector ~t with one image vector from each camera shot that has maximum probabilit y for a
semantic concept,~i max , into an integrated multimo dal vector ~m. This vector servesas the input for
an SVM that associates probabilit y p(! j ~m) to each shot, for all 32 conceptsin the lexicon. Again we
use3-fold crossvalidation on D for parameter optimization.

The VF run forms the input for the next link in the semantic value chain. For all conceptswe
compute the averageprecision performance on V. An overview of all concepts ranked according to
averageprecision validation performancein the content link is given in Table 1.

1For Person X related concepts we stretch the camera shot boundaries with �v e secondson each side, as in broadcast
news names or other indicativ e words are often mentioned just before or after a person is visible.



3.3 Style Link

In the style link weview a video from the production perspective. Basedon the methodology presented
in [19], this link analyzesa produced video basedon a set of four style detectors related to layout,
content, capture, and concept context. We combine style detector results into an iterativ e classi�er
combination schemeto extract the semantics.

3.3.1 Style Detectors

We develop detectors for all four style roles as feature extraction in the style link, see[19] for speci�c
implementation details. We have chosento categorizethe output of all style detectors, as this allows
for easyfusion.

For the layout L the length of a camera shot is used as a feature, as this is known to be an
informativ e descriptor for genre [18]. Overlayed text is another informativ e descriptor. Its presence
is detected by a text localization algorithm [13]. To segment the auditory layout, periods of speech
and silenceare detectedbasedon an automatic speech recognition system[6]. We obtain a voice over
detector by combining the speech segmentation with the camera shot segmentation [19]. The set of
layout features is thus given by: L = f shot length, overlayed text, silence, voice overg.

As concernsthe content C, a frontal face detector [14] is applied to detect people. We count the
number of faces,and for each face its location is derived [19]. Apart from faces,we also apply a car
detector [14] to check for presenceof cars. In addition, we measurethe average amount of object
motion in a camerashot [17]. Basedon speaker identi�cation [6] we have beenable to identify each of
the three most frequent speakers. The camerashot is checked for the presenceon the basisof speech
from one of the three [19]. Text strings recognizedby Video Optical Character Recognition [13]
are checked on length [19]. They are used as input for a named entit y recognizer [21]. On the
transcribed text obtained by the LIMSI automatic speech recognition system, we also apply named
entit y recognition. The set of content features is thus given by: C = f faces, face location, cars,
object motion, frequent speaker, overlayed text length, video text named entity, voice named entityg.

For capture T , we compute the cameradistancefrom the sizeof detectedfaces[14, 19]. In addition
to cameradistance,several typesof camerawork are detected[2]. Finally, for capture we alsoestimate
the amount of cameramotion [2]. The set of capture featuresis thus given by: T = f camera distance,
camera work, camera motiong.

Concept context allows to enhanceor reducecorrelation betweensemantic concepts. For the initial
concept context S we developed a reporter detector. Reporters were recognizedby fuzzy matching
of strings obtained from the transcript and VOCR with a database of names of CNN and ABC
a�liates [19]. The semantic results of the content link serve as the most important detector for the
concept context. Basedon the order de�ned in Table 1 a conceptdetection result is iterativ ely added
to the concept context. Results for all concepts are ranked according to the maximum obtained
probabilit y in the content link, i.e. p(! j ~m) or p(! j~t). We use this rank to assigna semantic concept
detector result into one of �v e categories.The basic set of concept context detectors is given by: Ŝ =
f reporter, content link rankg.

The concatenation of
n

L̂ ; Ĉ; T̂ ; Ŝ
o

yields a style vector ~s. This vector forms the input for an
iterativ e classi�er that trains a style model for each concept in the lexicon.

3.3.2 Iterativ e Enric hmen t

In the conceptcontext, we have de�ned order and started with weather news. This yields our �rst style
vector ~s1. Order is then exploited as follows. We train a style model for the concept weather news,
! 1, using ~s1. Basedon p(! 1j~s1), the conceptweather news is then again addedto the conceptcontext
or not. The decision to add a concept to the concept context dependson the general threshold � on
p(! j~s). In this iterativ e processthe content link rank feature is replaced for the detected concept.
Together with the content link rank of semantic concept 2, i.e. stock quotes, this yields ~s2. This



iterativ e processis then repeated for all semantic concepts in the lexicon. To optimize parameter
settings for all individual style models, we used3-fold crossvalidation on D.

3.3.3 Submitted Runs from the Style Link

We perform di�eren t experiments to verify the in
uence of the order. Furthermore we experiment
with di�eren t values for � , and check the in
uence of separatestyle models for ABC and CNN. The
rationale hereis that di�eren t authors have di�eren t style, and this should have an impact on semantic
concept performance[19].

In the AC1 run we use the order of Table 1 as a basis. Separatestyle models for ABC and CNN
were created, both using a threshold value of 0.5 for � In the AC2 run we �rst train style models for
the 22 concepts that were not part of the TRECVID 2004 evaluation. The 10 conceptsde�ned in
the feature extraction task are performed at the end. The relative order is again basedon the order
of Table 1. Like AC1, separatestyle models for ABC and CNN are created, both using a threshold
value of 0.5 for � The AC3 run is similar to the AC1 run, but � was now set to 0.1. The COM run
combines ABC and CNN and usesthe samesettings as the AC1 run.

3.4 Con text Link

In the context link we view a video from the context perspective. In the context link we rely on
concept detectors only. To combine concept detection results, di�eren t context con�gurations can be
exploited. We explore two con�gurations, onebasedon context vectors,and onebasedon an ontology.

3.4.1 Con text Vectors

Both the content link and style link yield for each concept in the lexicon a probabilit y that the concept
is present in a shot. We fusethoseprobabilities into a context vector ~c for each shot. This vector then
servesasthe input for a stacked classi�er that learnsnew conceptsnot present in ~c, or tries to improve
performance of existing semantic concepts, already present in ~c, seealso [1, 8]. For TRECVID we
only experiment with 32 dimensional context vectors, that aim to improve performanceof concepts
already in the lexicon. To optimize parameter settings, we use3-fold crossvalidation on V.

3.4.2 On tology

We also experiment with an ontology as an instance of the context con�guration. In [23] an ontology
based learning algorithm was proposed to improve concept detection results. We use the proposed
confusion factor to improve results. In short, the method updates probabilit y scoresby taking into
account that certain concept combinations are very unlikely to co-occur, e.g. studio setting and
outdoor. We de�ne the concept combinations on a set of common senserules.

3.4.3 Submitted Runs from the Con text Link

Based on the above con�gurations we perform di�eren t experiments in the context link. In the CC
run we combine the results of the content link into one context vector. In the R4 run we combined
the results of the AC1 run into a context vector. In the R5 run we combine the results of the AC2
run into a context vector. Finally, in the OR5 run we experiment with the ontology.

4 Semantic Video Search Engine

For the interactive Search Task we developed a semantic video search engine,which elaborateson last
yearssystem[22]. The set of 32 semantic conceptsforms the main input for our semantic video search
engineand allows for query by concept. Conceptscan be queried basedon likely presenceor absence
and by combining results from the two di�eren t runs. Apart from query by concept, we also provide



Figure 4: The MediaMil l semantic video search engine. The system allows for interactive query by
concept, query by keyword, and query by example. The top op the right panel showsthe selected results,
the bottom showsresults for the semantic concept car.

userswith the possibility for query by keyword. To that end we �rst derive words from the speech
recognition result [6]. Latent Semantic Indexing is then used to reduce the search space,this space
is then also used for querying [22]. An exact match of keywords on the transcribed speech is also
possible. Finally, our system allows for query by example. For all key frames in the video repository,
we compute the global Lab color histograms using 32 bins for each channel. The Euclidean distance
is usedfor histogram comparison.

Combining query interfaces allows for interactive retrieval. For search topics that have a close
relation to one or more conceptsfrom the lexicon, query by concept can be used. Examples include
�nding shots of ice hockey rinks, bicycles rolling along, and Bill Clinton in front of an American

ag. Query by concept can be combined with query by keyword to �nd speci�c instancesof semantic
concepts,e.g. shots containing 
o oded buildings, horsesin motion, or people walking together with
dogs. Of course it can also be used in isolation to �nd very speci�c topics, like shots containing
Benjamin Netanyahu or Boris Yeltsin. Based on query by example the retrieved results can be
augmented with visually similar camera shots. To give an example, we performed an interactive
query on the semantic concepts airplane take o�, bicycle, boat, car, and train to detect a set of
vehicles in Fig. 4.

5 Results

To evaluate both the semantic value chain and our semantic video search engine we participated in
the Feature Extraction Task and the Search Task of TRECVID 2004. We will �rst discussour results
on the Feature Extraction Task.



Table 2: UvA-MM TRECVID 2004 run comparison for all 10 benchmark concepts. In parentheses
the total number of correctly judged semantic concepts.

Content Link Style Link Context Link

BU VF AC1 AC2 AC3 COM CC R4 R5 OR5

Boat (441) 0.108 0.117 0.096 0.094 0.098 0.101 0.084 0.070 0.096 0.042

Madeleine Albright (19) 0.238 0.136 0.023 0.027 0.021 0.035 0.000 0.015 0.018 0.021

Bil l Clinton (409) 0.123 0.130 0.150 0.156 0.154 0.160 0.135 0.149 0.155 0.105

Train (43) 0.083 0.054 0.062 0.050 0.074 0.072 0.041 0.005 0.004 0.023

Beach (374) 0.008 0.020 0.017 0.011 0.010 0.021 0.010 0.012 0.010 0.006

Basket scored (103) 0.017 0.118 0.180 0.214 0.200 0.141 0.174 0.209 0.193 0.194

Airplane take o� (62) 0.051 0.065 0.037 0.042 0.073 0.043 0.052 0.040 0.050 0.037

People walking (1695) 0.134 0.150 0.159 0.151 0.138 0.166 0.139 0.170 0.168 0.106

Physical violence (292) 0.062 0.064 0.071 0.052 0.076 0.067 0.080 0.086 0.069 0.064

Road (938) 0.073 0.089 0.129 0.135 0.135 0.118 0.080 0.138 0.141 0.120

MAP 0.090 0.094 0.093 0.095 0.096 0.093 0.078 0.089 0.090 0.072

5.1 Semantic Concept Detection

In total ten runs were submitted for the Feature Extraction task, mean average precision (MAP)
results are visualized in Table 2, an overview of the precision at 100 is given in Table 3.

From the submitted runs several conclusionscan be drawn. First, the combination of modalities
(VF) in the content link almost always outperforms unimodal approaches (BU), except for sparse
concepts like Madeleine Albright and train. Second, a simple combination of textual and visual
content (VF) yields comparative MAP to more advanced methods, e.g. AC2 and R5. However, for
non-sparseconcepts,the style link and context link in generalimprove conceptdetection performance.
Moreover, the averagenumber of hits in the �rst 100results increasesin each link. This suggeststhat
our method requires a minimal number of examplesto be e�ectiv e. Third, the in
uence of concept
order in the style link seemsto be important for the �rst added concepts only. Basket scored for
example,bene�ts a lot from added concept context in the AC2 run, when comparedto the AC1 run.
However, in terms of MAP the AC2 run is only a little bit better then AC1. Fourth, lowering the value
of threshold � has a positive in
uence on performance, and results in our best run when measured
in terms of MAP. Fifth, although the COM and AC1 run obtain similar MAP, it can be concluded
that the SVM classi�er architecture is smart enoughto make the distinction betweenABC and CNN
styles. It seemsthat the SVM pro�ts more from the number of examplesthan a strict separation in
style models. However, for conceptsthat are only common in one style, e.g. basket scored in CNN,
results do pro�t from a distinction betweenbroadcaststations. Sixth, the in
uence of style is evident.
When comparing the CC run with the R4 run, the increasein MAP resulting from the style link is
14%. Finally, the di�erence in performancebetween the ontology run and the R5 run is signi�cant
(R5 performs 25% better). This shows that making a priori assumptionsabout semantics in video
repositories is not a good idea, its better to learn semantic context from the data. For the concept
boat for example, we de�ned a priori that vegetation was not very likely to co-occur. This had a
very negative in
uence on performance, becauseit turned out that one of the boats we found very
frequently in the other runs was a kayak in a forest. Ontologies do seemto help for sparseconcepts,
but this can also be explained as a failure of the learning approach becauseof a lack of examples.

If we compare our results with all other submitted systems, it is clear that we have presented a
powerful generic approach for semantic video indexing. The semantic value chain performs the best
for two concepts,secondfor �v e concepts,and third for one concept, seeFig. 5.



Table 3: UvA-MM TRECVID 2004 precision at 100 comparison for all 10 benchmark concepts. In
parenthesesthe total number of correctly judged semantic concepts.

Content Link Style Link Context Link

BU VF AC1 AC2 AC3 COM CC R4 R5 OR5 Average

Boat (441) 44 42 38 36 40 39 34 37 39 37 38.6

Madeleine Albright (19) 10 12 5 6 5 5 0 4 4 5 5.6

Bil l Clinton (409) 25 26 35 32 34 36 26 37 41 33 32.5

Train (43) 9 7 7 6 8 8 7 3 2 5 6.2

Beach (374) 10 13 12 11 9 14 9 12 11 9 11.0

Basket scored (103) 8 24 21 35 30 21 26 30 33 33 26.1

Airplane take o� (62) 9 10 8 11 9 9 10 8 10 10 9.4

People walking (1695) 65 65 72 57 65 71 68 83 77 54 67.7

Physical violence (292) 17 17 25 18 13 24 17 31 23 19 20.4

Road (938) 47 43 53 51 53 41 41 51 55 52 48.7

Average 24.4 25.9 27.6 26.3 26.6 26.8 23.8 29.6 29.5 25.7 26.6

5.2 In teractiv e Search

For the interactive search we submitted four runs in total. All runs were performed by expert users.
Oneuserhad knowledgeabout the semantic conceptsand their validation set performance. The others
were confronted with the semantic conceptsthe �rst time they were intro duced to the system.

For all topics the best UvA-MM result of each run is visualized, together with the median and the
best overall result, in Fig. 6. We scoredabove the median for all search topics, had best performance
for seven topics, and obtained best overall MAP with run UvA-MM1 (0.352). This run wascompleted
by the user with knowledgeabout the semantic concepts. The other three usersobtained an MAP of
0.227on average. A scorethat is 25%higher than the median of all interactive search runs submitted.

We explain the successof our approach, in part, by the lexicon we used for our semantic video

Figure 5: Comparison of UvA-MM semantic concept detection resultswith other systems. In terms of
system performance, UvA-MM ranks �rst in two concepts, second in �ve concepts, and third in one
concept.



Figure 6: Comparison of UvA-MM interactive search results with other systems. The UvA-MM runs
rank �rst in seventopics. Furthermore the UvA-MM1 run has the best MAP (not visualized).

search engine. For sometopics there wasa clear (accidental) overlap with the conceptsin our lexicon,
i.e. ice hockey in search topic 130, bicycle in search topic 140, and Bil l Clinton in search topic 144.
Not surprisingly we did very well on those topics. For others, general concept classeswere available
that allow to make a �rst selection,e.g. sporting event for tennis player in search topic 142and animal
for horsesin search topic 145. Based on query by example and query by keyword, results can then
be re�ned. Query by example is particularly useful when an answer to a search topic is found in a
commercial. For search topics that did not have a clear overlap with the conceptsin the lexicon, users
had to rely on a combination of query by keyword and query by example. Here we performed less
well, although still above the median. For example, wheelchairs in search topic 143 and Person X
related topics that were not in the lexicon (128, 133, 134, 135, 137).

6 Conclusion

To bridge the semantic gap an ideal video retrieval systemshould combine query by conceptand query
by similarit y in an interactive fashion. To that end we have developed a semantic video search engine.
Main innovation is the possibility to query on a lexicon of 32 semantic concepts. The conceptsare
detected using the semantic value chain. The semantic value chain combines the content link, style
link, and context link into a consecutive analysis chain, that allows for genericvideo indexing. Both
the semantic value chain and the semantic video search engineare successfullyevaluated within the
2004TRECVID benchmark as top performers for their task.

The semantic value chain is asstrong as its weakest link. For future research we plan to extend the
semantic value chain with more advancedimageand text analysismethods in the content link. Apart
from improved content analysis we also plan to intro duce feature selection in each link to optimize
results. However, the greatest challengeahead is to extend the lexicon of semantic conceptsto a set
that is compatible with human knowledge. This will have a dazzling impact on multimedia repository
usagescenarios.
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